Теплый пол расчет электрический: Расчет теплого пола электрического по мощности и площади

Содержание

Расчет теплого пола электрического по мощности и площади

Одним из вариантов автономного отопления в квартире является система подогрева напольного покрытия. Такой вариант очень популярен на сегодняшний день и может использоваться не только в многоквартирном доме, но и в загородном коттедже, на даче и даже в бане. Перед тем как переходить к монтажу отопительной системы данного вида, необходимо правильно рассчитать ее мощность, чтобы не переплачивать за лишнее тепло и в то же время не сделать ее слабомощной. О том, как правильно произвести расчет электрического теплого пола по мощности и площади комнаты, мы и поговорим далее!

Технология вычислений

Сразу же следует отметить, что на сегодняшний день существуют сервисы, вроде онлайн-калькуляторов и программ по расчету теплого пола для индивидуальных условий. Такие программы действительно очень удобные и позволяют сразу же определить точную мощность пленочного покрытия либо греющего кабеля. Если же Вы по каким-либо причинам не доверяете компьютерным вычислением, рекомендуем сделать все по старинке – с помощью простых формул.

Итак, формула расчета электрического теплого пола выглядит следующим образом:

P=Pм*Sкомн,

где:

  • Pм – мощность нагревательного материала, которую Вы сами должны выбрать (об этом ниже), м2;
  • Sкомн. – полезная площадь комнаты.

Как Вы видите, формула для расчета далеко не сложная, однако в ней есть две неизвестных, которые Вы сами должны определить. Что касается полезной площади комнаты, тут все просто. Нагревательный мат, кабель либо пленку нужно укладывать только в тех местах, где не будет стоять бытовая техника и мебель. Во-первых, это и так запрещается производителями, т.к. посторонние объекты на полу будут препятствовать теплообмену, в результате чего материал будет перегреваться. Во-вторых, какой смысл подогревать поверхность там, где никто не будет ходить? Это лишняя трата электроэнергии. На схеме Вы можете увидеть, как выглядит полезная площадь комнаты для расчета теплого пола электрического:

Полезная площадь обогрева

Расчет полезной площади под укладку электрического теплого пола производится следующим образом: ширину поверхности необходимо умножить на длину.

Что касается мощности нагревательного материала, ее Вы должны выбрать самостоятельно, в зависимости от типа помещения. Для каждой комнаты мощность инфракрасной пленки либо мата будет своя, что очевидно – балкон и коридор больше нуждаются в отоплении, чем спальня и детская, которые дополнительно отапливаются водяными радиаторами.

Предоставляем к Вашему вниманию наиболее оптимальные значения для расчета мощности электрического теплого пола:

  • кухня: 110-130 Вт/м2;
  • ванная комната (санузел): 120-150 Вт/м2;
  • балкон: 180 Вт/м2;
  • прихожая: 110-120 Вт/м2;
  • коридор: 110-120 Вт/м2;
  • гостиная 110-130 Вт/м2;
  • спальня 110-130 Вт/м2.

Обращаем Ваше внимание на то, что вышеуказанные значения подходят в том случае, если электрический теплый пол будет использоваться как дополнительная система подогрева. Если же Вы решили использовать такой вариант в качестве основной системы отопления, для каждой комнаты необходимо выбирать нагревательный материал мощностью 140-180 Вт/м2.

Полезная площадь Вам известна, мощностные параметры также выбраны. Остается только подставить значения, в формулу и произвести общий расчет теплого пола электрического по мощности. Чтобы Вы поняли, как нужно рассчитывать данный параметр, далее мы предоставим пример для одной из комнат.

Наглядный пример

К примеру, нам нужно рассчитать теплый пол по площади гостиной 25 м

2. Условно рассчитаем полезную площадь комнаты. Так как в гостиной у нас установлен диван, кресла, столик и шкаф, полезная площадь будет всего лишь 60% от общей.

Sкомн=25*0,6=15 м2

Следующий шаг – необходимо выбрать мощность проводника, которым в нашем случае будет греющий кабель. Тут один очень важный нюанс – кабель продается с характеристикой не Вт/м2, а Вт/м. Вы должны самостоятельно подобрать шаг укладки материала на 1 метр квадратный. К примеру, выбрав кабель с параметром 30 Вт/м, его нужно укладывать с шагом в 20 см, чтобы получилось значение 150 Вт/м2.  Вернемся к расчету, и согласно рекомендациям принимаем оптимальное значение для гостиной – 110 Вт/м2 (дополнительно будет присутствовать центральное водяное отопление).

Подставляем значения в формулу, после чего, используя калькулятор, вычисляем мощность:

P=15*110=1650 Вт

С вычисленным значением идем в магазин и покупаем подходящий размер нагревательного материала. Пример расчетных работ Вы также можете просмотреть на видео:

Как рассчитать мощность системы подогрева пола

Вот и вся технология расчета электрического теплого пола по мощности и площади комнаты. Данная формула подойдет для определения требуемой мощностью как при укладке материала под ламинат, так и при монтаже под плитку. Рекомендуем сразу же вычислить, сколько потребляет теплый пол в Вашем случае, чтобы сравнить с другими типами электрообогревателей. Возможно, такой вариант отопления будет для Вас слишком затратным и более выгодным решением станет подключение инфракрасных обогревателей.

Похожие материалы:

расчет мощности и энергопотребления теплого пола —

Расчет мощности системы

ПРОИЗВЕСТИ РАСЧЕТ МОЩНОСТИ СИСТЕМЫ НАГРЕВА, НУЖНОЕ КОЛИЧЕСТВО РЕГУЛЯТОРОВ ТЕМПЕРАТУРЫ, ПРОИЗВЕСТИ ПРОВЕРКУ СИЛОВЫХ ВОЗМОЖНОСТЕЙ ЭЛЕКТРИЧЕСКОЙ СЕТИ.

РАСЧЕТ: МАКСИМАЛЬНАЯ МОЩНОСТЬ ИНФРАКРАСНОГО ПЛЕНОЧНОГО НАГРЕВАТЕЛЯ СОСТАВЛЯЕТ 220 ВТ НА 1 М2, ИСХОДЯ ИЗ ОБЩЕГО КОЛИЧЕСТВА НАГРЕВАТЕЛЬНОЙ ПЛЕНКИ РАССЧИТЫВАЕТСЯ СИЛА ТОКА ПО ФОРМУЛЕ: I = P/U

ГДЕ I – СИЛА ТОКА, Р – МОЩНОСТЬ НАГРЕВАТЕЛЬНОЙ ПЛЕНКИ, U – НАПРЯЖЕНИЕ ЭЛЕКТРОСЕТИ.

ПОКАЗАТЕЛИ СИЛЫ ТОКА НУЖНО ЗНАТЬ ДЛЯ ТОГО, ЧТОБЫ ПОДОБРАТЬ НУЖНЫЕ СЕЧЕНИЯ ЭЛЕКТРИЧЕСКОГО ПРОВОДА, ВЫБРАТЬ ПОДХОДЯЩУЮ МОДЕЛЬ ТЕРМОРЕГУЛЯТОРА И ОПРЕДЕЛИТЬ СООТВЕТСТВИЕ СВОЕЙ ШТАТНОЙ ЭЛЕКТРОПРОВОДКИ ПРЕДПОЛАГАЕМЫМ СИЛОВЫМ НАГРУЗКАМ НА НЕЕ.

СЕЧЕНИЕ ЭЛЕКТРИЧЕСКОГО ПРОВОДАДОПУСТИМЫЙ ТОК, МЕДЬДОПУСТИМЫЙ ТОК, АЛЮМИНИЙ
1,5 КВ. ММ16 АМПЕР10 АМПЕР
2,5 КВ. ММ25 АМПЕР16 АМПЕР
4 КВ. ММ32 АМПЕР25 АМПЕР

Пример расчета

Помещение:

Кухня-столовая, которая имеет площадь 20 метров квадратных. Напольное покрытие – ламинированная доска.

Вид отопления – основной.

Вычитая площадь мягкой мебели и кухонного гарнитура, установленной бытовой техники и отступлений по периметру кухни, на все помещение потребуется количество пленки общей площадью примерно 12 квадратных метров.

Соответственно, общая максимальная мощность нагревательной системы составляет:

Р = 12 м2 х 220 Вт = 2 640 Вт.

І = Р/U = 2 640Вт / 220 В = 12,0 А

Для данного объекта рекомендуется:

  • сечения электрического провода, медь – полтора кв. мм;
  • минимальная мощность терморегулятора 3 кВт.

Максимальная площадь пленочного инфракрасного нагревателя, который можно подключать к терморегуляторам, имеющимся на рынке:

  • 3 кВт = 13,5 м2;
  • 3,5 кВт = 15,9 м2;
  • 4 кВт = 18,1 м2;
  • 6 кВт = 27,2 м2

Формула для расчета энергопотребления

P = S (кв. м) х 0,4 х 0,35 х U (расчет энергопотребления на 1 кв.м./час)

где:

  1. S – площадь помещения
  2. 0,4 это 40% от площади помещения, закрытой пленкой (дополнительный обогрев)
  3. 0,35 это коэффициент работы теплого пола с применением терморегулятора
  4. U это 220 Вт номинальная мощность пленки

Итак, 30 кв. м х 0,4 х 0,35 х 220 = 924 Вт/час

924 Вт/час х 2,42 (средний тариф по России)/ 1000 = 2,23 руб/час

Пол работает (при условии, что это дополнительный обогрев) в среднем 4- 5 часов в день

2,23 х 5 = 11,2 руб/ сутки

Итого: 11,2 х 31 день = 346 руб/ месяц

Как рассчитать теплый пол для квартиры или дома

Сегодня система обогрева «теплый пол» широко применяется не только в качестве дополнительного отопления, но и основного- без радиаторов  на стене. Он создает комфортный и более эффективный обогрев помещения по сравнению с традиционным отоплением. Про преимущества и подключение системы Теплый пол читайте в предыдущей нашей статье.

Смонтировать теплый пол своими руками сможет большинство хозяев без вызова специалистов. Вам необходимо купить коробку со всем необходимым под названием «теплый пол» и терморегулятор. Как уложить его правильно Я расскажу в следующей статье.

Перед покупкой необходимо рассчитать величину необходимой мощности для площади помещения. При этом учитывают только лишь полезную площадь, которая не занята  мебелью или бытовой техникой.

На участки пола ими занятые нельзя укладывать греющий кабель, что будет приводить к его перегреву с последующей поломкой.

Если в комнате очень мало полезного пространства, тогда укладывать греющий кабель нет смысла.

Если Вы планируйте применять электрические тёплые полы в качестве единственного или основного источника обогрева помещения, учитывайте что если греющий кабель будет уложен менее чем на 70 % от всей площади- тогда в помещении  будет прохладно.

Теплый пол запрещено монтировать под паркет из-за особенностей этого материала.

Удельная мощность, применяемая при расчетах.

Если Вы рассчитываете использовать электрический теплый пол как основной

или единственный вид отопления, тогда удельная мощность должна находится в пределах от 160 до 180  Ватт на 1 квадратный метр.

Удельная мощность дополнительного отопления должна находится в пределах от  120 до 140 Ватт на 1 квадратный метр. Данный вид обогрева используется только совместно с основным источником отопления (газовый котел или электрическое).  Наилучший вариант использования в квартирах в межсезонье в момент, когда еще не начался или уже закончился отопительный сезон, а на улице еще холодно.

Необходимую величину мощности обогрева для разных помещений Вы найдете в таблице.

Все помещения в доме или квартире по-разному используются, поэтому и требования будут разные.

Понятно, что мощность системы обогрева кухни или коридора будет меньшей, чем для спальни.

Все значения мощности указаны с небольшим запасом, потому что терморегулятор, как правило редко устанавливается на максимум. А делая мощность теплого пола с  20-25 процентным запасом- Вы исключаете возможность того, что степень нагрева будет недостаточной. Согласитесь, что проще уменьшить регулировку, чем испытывать дискомфорт от недостаточности тепла. Кроме того существует много различных факторов, которые влияют на эффективность системы теплый пол.
Так например, если помещение расположено на первом этаже,  тогда мощность необходимо увеличить  15 – 20  процентов.

Пример расчета электрического теплого пола.

Что бы рассчитать необходимо   воспользоваться довольно простой формулой. Берем из таблицы коэффициент удельной мощности для подходящего типа помещения и вида обогрева,  умножаем на площадь помещения, на которой Вы собираетесь  установить электрический теплый пол.

Например, сделаем расчет для комнаты на 2 этаже общей площадью 15 квадратных метров.

  1. Сразу необходимо определить полезную площадь. Например у вас установлена кровать размером 2 на 2.20 м, занимаемая ей площадь равна 2х2.2=4.4 кв. метра. А так же стоит шкаф, площадь которого равна 1х1.1=1.1 кв. м. Полезная площадь будет равна 15-4.4-1.1=9.5 кв. м.
  2. Из таблицы берем подходящий коэффициент для дополнительного обогрева комнаты не первого этажа, который равен 120-130 Вт на метр.
  3. Перемножаем два этих числа и получаем 9.5х120= 1140 Ватт.

Значит нам необходимо купить электрический теплый пол мощностью 1200 Ватт.

Аналогично рассчитываются и другие помещения дома или квартиры.

Как рассчитать теплый пол — методика, необходимые данные

Прежде чем выбрать ту или иную систему электрического встроенного обогрева, необходимо выполнить расчет теплого пола. Это позволит получить предварительную информацию о расходах на его обустройство. Можно  поручить проектирование теплого пола профессионалам, обратившись в строительную фирму, специализирующуюся на подобных работах. В этом случае вам не только посчитают затраты, но и предложат оптимальный вариант, учитывающий ваш бюджет, пожелания и особенности квартиры.

Чтобы выполнить расчет теплого пола самостоятельно, воспользуйтесь онлайн калькуляторами. Многие компании, предлагающие услуги по монтажу обогревательных систем, помещают на своих сайтах подобные калькуляторы. Программа расчета теплого пола позволяет довольно легко сделать нужные вычисления, если следовать приведенным в ней инструкциям.

Вид онлайн калькулятора для расчета теплого пола

Кроме того, в сети можно найти не один пример сметы на теплый пол с указанием цен на материалы и работу. Используя подобный образец, но подставив в расчеты свои цифры, вы сможете произвести расчеты для вашего помещения.

Необходимые данные для расчетов теплого пола

Выполняя расчеты теплых полов, необходимо определить размеры помещения, где их будут обустраивать.   Но помните, что считается только площадь, свободная от крупных предметов – мебели, бытовой техники. Поэтому, планируя оборудование электрических полов, необходимо заранее решить, как элементы интерьера будут располагаться в комнате. Менять их местоположение после монтажа системы не рекомендуется.

Один из вариантов установки теплого пола на кухне

Перед тем как рассчитать теплый пол, выберите желаемый тип обогрева. Этот показатель имеет ключевое значение. Мощность системы, которая используется в качестве главного источника тепла, должна быть значительно больше, чем у пола для дополнительного обогрева.

Рекомендуем к прочтению:

Если проект теплого пола предполагает, что система будет служить заменой централизованному отоплению, то обогреваемая поверхность должна быть не менее 70%  от всей площади.

Если комната плотно заставлена мебелью, то соблюсти это условие будет невозможно. В данном случае нет смысла монтировать электрический пол, и придется искать другой вариант отопления помещения.

При расчете теплого пола, как основного источника тепла, следует исходить из того, что его удельная мощность должна быть не менее 150 Вт/м2. Для дополнительного обогрева хватит мощности 110–140 Вт. Такой пол позволит поддерживать комфортную температуру в период межсезонья, когда централизованное отопление еще не работает.

Пример расчета теплого электрического пола

Комфортный (дополнительный) тип обогрева выручит также в том случае, если помещение расположено на первом этаже, а под ним находится холодный подвал. Расчет мощности теплого пола производится с учетом этого фактора. Для сухих помещений первого этажа, таких, как кухня или коридор, нужно выбирать максимальную мощность, т. е. 140 Вт.

Расчет для разных типов помещений

Мощность теплого пола для разных помещений

Каждое помещение имеет свои функциональные особенности и, соответственно, особые требования к удельной мощности системы отопления. Перед тем как рассчитать мощность теплого пола, выберите тип помещения. Наиболее требовательными являются застекленные лоджии и балконы: для комфортного обогрева требуется заложить мощность не менее 180 Вт/м2. Для влажных помещений типа ванной комнаты понадобится 140 Вт/м2. То же касается всех комнат, если под ними находится неотапливаемое пространство.

А в  расчет теплого пола электрического для спален, коридоров и гостиных, которые расположены на верхних этажах, закладывается минимальная мощность – 120 Вт/м2.

Рекомендуем к прочтению:

После того как вычислена отапливаемая площадь и необходимая мощность, можно выбрать наиболее подходящий для ваших целей тип электрического обогревателя: кабель, теплый мат, пленочный или стержневой инфракрасный пол.

Особенности монтажа различных видов теплых полов и их цена оказывают самое значительное влияние на итоговую стоимость.

Теплоизоляция для полов

Чтобы понять, как правильно рассчитать теплый пол, нужно знать следующее: вычисления на сайтах даются для типовых помещений, в которых выполнена теплоизоляция и установлены двойные стеклопакеты.  Поэтому в расчет стоимости теплого пола обязательно должны включаться расходы на термоизоляцию.

Использование изоляционных материалов не только уменьшить потери тепла в комнатах, под которыми находится холодный фундамент или земля, но и позволит сэкономить энергию в более защищенных помещениях.

Для некоторых электрических обогревательных систем, например инфракрасных пленочных и стержневых полов, использование специальной отражающей подложки является гарантией эффективной работы. Учтите этот момент перед тем, как рассчитать электрический теплый пол.

Фольгированый утеплитель, который используется при монтаже теплых полов

Терморегуляторы

Терморегулятор –  один из важных элементов в комплекте электрического пола. С его помощью осуществляется питание системы от сети, а также управление обогревом. Использование этого прибора способствует экономии электрической энергии.  Если вы выбираете теплые полы,  как рассчитать затраты на приобретение терморегулятора? Прежде чем приобрести ту или иную модель, определитесь, какими функциями вы будете пользоваться регулярно. Выбор широк – от простейших механических устройств до интеллектуальных систем, способных эффективно управлять отоплением дома в отсутствие хозяев.

Программируемый терморегулятор

Любой пример расчета теплого пола даст вам приблизительную информацию о стоимости оборудования системы обогрева. Для получения более точного результата нужно учесть все особенности конкретного помещения и условий, в которых будет функционировать данная система. Такое под силу только специалистам, поэтому если вы заинтересованы в точных данных, обратитесь за помощью к профессионалам.

Онлайн расчет электрического теплого пола


Нагревательные маты EKOMAT

Нагревательные маты продаются в готовых к монтажу комплектах фиксированного размера. Если мат не помещается по ширине то можно снять кабель с сетки, но значительно удобнее будет использовать кабель Elektra DM.

Обогреваемая площадь пола =
10 м².
Мат
EKOMAT 160/10,0
Общая мощность, Вт
1600
Количество, шт
1
Длина, м
20
Ширина, м
0,5
Факт.площадь, м2
10

Терморегулятор

Для управление системой теплого пола требуется выбрать контроллер (терморегулятор).

OTN-1991
— электронный терморегулятор с датчиком пола
OCC2-1991
— программируемый терморегулятор с датчиком пола
OCD4-1999
— программируемый терморегулятор, комбинированный с датчиком пола и воздуха

Контактор —

Тонкий греющий кабель Elektra DM

Кабель монтируется в слой плиточного клея или ровнителя.

Обогреваемая площадь пола =
2 м². Желаемая мощность, на м² = 150 Вт.
Кабель
ELK DM 10/280
Общая мощность, Вт
280
Количество, шт.
1
Длина, м
28
Монтажный интервал, см
7
Мощность на м²
140
Альтернативный вариант
Кабель
ELK DM 10/320
Общая мощность, Вт
320
Количество, шт.
1
Длина, м
32
Монтажный интервал, см
6
Мощность на м²
160

Терморегулятор

Для управление системой теплого пола требуется выбрать контроллер (терморегулятор).

OTN-1991
— электронный терморегулятор с датчиком пола
OCC2-1991
— программируемый терморегулятор с датчиком пола
OCD4-1999
— программируемый терморегулятор, комбинированный с датчиком пола и воздуха

Контактор —

Монтаж нагревательного кабеля DM может быть осуществлен с помощью горячих гвоздей, алюминиевого скотча и т.п.

Греющий кабель Elektra VCD17

Кабель монтируется в стяжку.

Обогреваемая площадь пола =
25 м². Желаемая мощность, на м² = 130 Вт.
Кабель
ELK VCD 17/1590
Общая мощность, Вт
3180
Количество, шт.
2
Длина, м
186
Монтажный интервал, см
13
Мощность на м²
27
Альтернативный вариант
Кабель
ELK VCD 17/2030
Общая мощность, Вт
4060
Количество, шт.
2
Длина, м
240
Монтажный интервал, см
10
Мощность на м
162

Терморегулятор

Для управление системой теплого пола требуется выбрать контроллер (терморегулятор).

OTN-1991
— электронный терморегулятор с датчиком пола
OCC2-1991
— программируемый терморегулятор с датчиком пола
OCD4-1999
— программируемый терморегулятор, комбинированный с датчиком пола и воздуха

Аксессуар для монтажа: монтажная лента TMS
Кол-во, м
TMS10 (10м/шт)
TMS25 (25м/шт)

Контактор —

Расчет теплого пола.

Как рассчитать теплый пол и мощность нагревательного кабеля

В последнее время данный вид обогрева помещения становится очень популярным. Расчет мощности нагревательного кабеля производят для того, чтобы система обогрева теплый пол в процессе работы соответствовала всем требованиям комфортности. То есть, теплый пол должен обогревать помещение в нужной степени без чрезмерных затрат электроэнергии.

Для обогрева помещений теплый пол может использоваться как основной или дополнительный источник тепла. Кабельная система обогрева, которая будет использоваться для помещения как основной источник тепла должна иметь мощность 160-180 Вт / кв.м. В помещениях, где теплый пол является дополнительным источником тепла, вполне хватит мощности нагревательного кабеля в 100-150 Вт / кв.м.

Чтобы рассчитать необходимую удельную мощность кабеля нужно узнать полезную площадь помещения. Полезная площадь — это та, на которой непосредственно будет прокладываться кабель без учета площади занимаемой стационарной мебелью (шкаф, диван, тумбы).

Например, если у вас площадью комнаты 16 кв.м с расположенными в ней диваном 2.5 кв.м и шкафом 1 кв.м, то полезная площадь будет составлять 12.5 кв.м.

Исходя из выше сказанного следует что, мощность нагревательного кабеля для помещений, где теплый пол как:

  • — основной источник тепла:

P = 12.5 (кв.м) * 160 (Вт/кв.м) = 2 кВт;

  • — дополнительный:

P = 12.5 (кв.м) * 100 (Вт/кв.м) = 1.25 кВт.

Любой нагревательный кабель имеет свою погонную мощность — это мощность одного метра кабеля (например, 20 Вт/м). Некоторые покупатели, сопоставив удельную и погонную мощность, придя в магазин, просят продать им «столько-то» метров кабеля. Однако при покупке кабеля опираясь на погонную мощность, не следует!

В ряду того, что холодные и горячие концы соединяются специальными муфтам, нагревательные кабели продаются фиксированными отрезками (разной мощности). Эти отрезки нельзя увеличивать или уменьшать, поскольку установка неквалифицированным персоналом концевых и соединительных муфт может стать причиной преждевременного выхода кабеля из строя. Также при разрезании кабеля с него снимается гарантия.

Поэтому основной показатель, на который регламентируются при покупке кабеля, является не его метраж, а мощность. К примеру, если у вас расчетная мощность составляет 2 кВт, то ближайшая ей соответствующая 2.08 кВт, длиной 140 м.

Таблица расчета мощности нагревательного кабеля
Мощность,
кВт
Длина кабеля,
м
Сопротивление
при 20 °C,
Ом ±10 %
«Полезная» площадь помещения, м²
доп. источник тепла основной источник тепла
100 Вт/м² 150 Вт/м² 160 Вт/м² 180 Вт/м²
0.16 11 300 1.6 1.1 1.0 0.9
0. 25 17 190 2.5 1.7 1.5 1.4
0.44 29 109 4.4 2.9 2.5 2.4
0.67 45 64.4 6.7 4.5 4.1 3.7
0.82 55 52.6 8.2 5.5 4.9 4.6
1.05 71 40.8 10.5 7.0 6.3 5.8
1.25 83 34.3 12.5 8.3 7.5 6.9
1.40 95 30.4 14.0 9.3 8.6 7. 8
1.75 117 22.1 17.5 11.7 10.9 9.7
2.08 140 18.0 20.8 13.9 12.8 11.6

На сегодняшний день существует достаточно широкий спектр выбора кабельных систем обогрева, поэтому проблем с выбором типа и мощности кабеля возникнуть не должно. Тем более, что в большинстве магазинов мощность кабеля рассчитывают продавцы в качестве бесплатной услуги.

Как рассчитать теплый пол своими руками

После того как вы определитесь в качестве какого источника тепла у вас будет установлен электрический теплый пол (основного или дополнительного) и будет выбран нагревающий элемент, можно приступать к расчету шага укладки. Очень важно непосредственно перед монтажом произвести правильный расчет теплого пола с учетом тепловых потерь и полезной площади обогреваемого помещения.

Рассчитываем шаг укладки нагревательного кабеля

После того как кабель выбран, для его равномерной укладки необходимо рассчитать шаг укладки. Шаг укладки – это расстояние между уложенными параллельно линиями нагревательного кабеля.

Рассчитать шаг укладки можно по несложной формуле:

h шаг укладки (мм) = (S площадь обогрева * 1000) / (L длина кабеля)

Для нашего случая: (12.5 * 1000) / (140) = 90 мм.

В результате получаем, что приобретенный кабель нужно укладывать с шагом в 9 см. Перед началом укладки желательно нарисовать план укладки.

План укладки двухжильного нагревательного кабеля с обозначением шага укладки.

Если после расчета мощности нагревательного кабеля был выбран одножильный кабель, то при укладке необходимо помнить что для его подключения используется оба конца кабеля.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Как самостоятельно провести расчет теплого пола

Сегодня большим спросом среди населения пользуется теплый пол. Это покрытие может быть установлено как в виде отдельной системы, так и в качестве дополнительного отопления. Сама же процедура монтажа теплого пола осуществляется при помощи специалистов либо своими руками. Однако прежде чем приступить к укладке любого вида такого напольного покрытия, необходимо провести расчет теплого пола.

Критерия выбора теплого пола

При выборе вида теплого пола следует учитывать такой основной критерий, как мощность данного покрытия. Расчет мощности теплого пола зависит от следующих факторов: (См. также: Расчёт системы отопления)

  1. площади обогреваемой комнаты;
  2. типа помещения;
  3. вида обогрева комнаты.

При этом следует помнить, что учитывается только полезная площадь помещения, которая не занята мебелью и различной бытовой техникой. Это могут быть: холодильник, стиральная машина, стенка, кровать и прочее. Именно поэтому расчет мощности теплого пола требует наличия точных данных, связанных с расположением в комнате всех бытовых предметов и мебели.

Еще одним важным моментом является то, что при использовании основного отопления, представленного в виде электрического теплого пола, обогреваемая площадь должна составлять не менее 70% от площади всей комнаты. Однако иногда установка теплых полов в виде основного источника отопления является затруднительным процессом либо вовсе не возможным. Как правило, это связано с наличием различной мебели больших размеров.

Мощность теплого пола и виды помещений

Для каждого помещения предусмотрена определенная мощность теплого пола. Если данная отопительная система устанавливается в качестве основного обогревателя, тогда удельная мощность на один квадратный метр колеблется в пределах 150 – 180 Вт. Естественно, что электрическая мощность данных полов должна превышать показатель, предусмотренный для электрических полов, которые смонтированы в качестве дополнительного обогрева. (См. также: Карта сайта)

При дополнительном отоплении удельная мощность колеблется в пределах 110 – 140 Вт на один квадратный метр комнаты. Данная система используется одновременно с основным источником отопления. Это может быть газ, электричество, печь, камин и прочее. Такая установка отлично подходит для отопления квартир в многоэтажных домах.

Так как каждое помещение дома имеет свои функциональные возможности, рекомендуется проводить расчет теплого пола (особенно его мощности) с учетом следующих норм:

  • для кухни и жилой комнаты мощность должна колебаться в пределах 110 — 150 Вт/м2,
  • для застекленной лоджии – в пределах 140 — 180 Вт/м2,
  • для ванной комнаты – 140 — 150 Вт/м2.

Данные значения удельной мощности приведены с небольшим запасом, за счет которого такая отопительная система имеет некоторый резерв, работая при этом только на 70-75%. (См. также: Монтаж тёплого пола своими руками)

Важно. При расчете мощности теплых полов следует учитывать и этаж квартиры. Для первого этажа данный показатель необходимо увеличить на 15-20%.

Расчет теплого водяного пола

Прежде чем приступить к монтажу, специалисты рекомендуют составить проект по укладке теплого пола на основе тщательного теплотехнического расчета. Данные вычисления проводятся при помощи существующих специальных компьютерных программ. Если необходимо установить теплый пол в доме, тогда следует высчитать коэффициент теплоотдачи.

При расчете следует обязательно учитывать:

  1. планы всех комнат,
  2. конструкцию наружных стен,
  3. вид и размеры установленных в помещении окон,
  4. температурный режим комнаты,
  5. местонахождение коллекторов,
  6. местонахождение теплового генератора,
  7. вид теплого генератора,
  8. виды напольных покрытий в каждой комнате дома,
  9. разновидность системы (настильная, бетонная и др.),
  10. есть ли необходимость в регулировки температурного режима в каждой комнате.

Помимо этого, чтобы рассчитать потерю тепла в помещении, необходимо учитывать следующие критерии:

  1. площадь конструкций ограждающего типа и их коэффициент передачи тепловой энергии,
  2. среднюю зимнюю температуру,
  3. температура и влажность воздуха в комнате,
  4. наличие механической вентиляции в комнате,
  5. наличие различных дополнительных отопительных источников.

В зависимости от данных критериев и потери тепла осуществляется расчет трубы для теплого пола и проводится разметка, где именно будет проходить отопительная система. (См. также: Монтаж водяного тёплого пола своими руками)

Расчет водяного теплого пола, выбор нужного вида, а также установка осуществляется с учетом его нагрузки. Данный критерий зависит от таких факторов, как:

  1. шаг монтажа и диаметр трубок,
  2. температура входящей и исходящей воды из контура,
  3. напольное покрытие,
  4. вид установленной теплоизоляции,
  5. высота стяжки,
  6. используемый материал стяжки,
  7. комнатная температура.

Расчет трубы теплого пола

Выполнить расчет теплого водяного пола можно самостоятельно. Главное, что необходимо сделать, осуществляя расчет трубы теплого пола, – это определить свободную площадь данной комнаты. Важно при проведении всех подсчетов учесть и то, что нагревательный агрегат будет монтироваться не по всему полу. Как было уже сказано, не берутся во внимания и те места, где будет установлена мебель либо крупная бытовая техника.

Помимо этого, рекомендуется, чтобы общая длина трубы одного контура не превышала ста метров. В противном же случае теплые полы следует разделить на два контура. Также берется во внимание подводка к распределителю и проходным трубам иных отопительных контуров. Расчет трубы теплого пола можно произвести при помощи следующей формулы: (См. также: Коллектор для теплого пола)

L = Ar /a + 2 x Lzu — 2 x Ld (м) где: Ar – площадь комнаты в м², Ld – это длина проходных отопительных труб в м, a – это шаг укладки отопительных труб в м, L – это длина трубы для теплого пола в м, Lzu — это длина подающих либо обратных труб отопления в м.

Расчет количества труб в одном погонном метре

Так как расчет водяного теплого пола является сложным и трудоемким процессом, требующим наличия некоторого опыта и знаний, прежде чем приступить к монтажу данной отопительной системы, следует определиться с типом устанавливаемого теплого водяного пола, а также с трубами и их количеством. Также предварительные расчеты позволят определить размер финансовых затрат, связанных с установкой такого вида отопительной системы.

Допустим, что комната имеет площадь, равную 10 квадратным метрам. В данном помещении следует поддерживать температуру в пределах +20 градусов. Первоначально следует рассчитать из данной площади рабочую зону. Для этого понадобится определить размер стен. Допустим, что две стены по два метра, а одна – пять метров. От каждой из данных стен рекомендуется оставить по 0,3 метра. Это место отведено под мебель. В итоге получается следующий пример: 10-0,3х(2+2+5)=8,3 метра. Данная цифра и является рабочей площадью.

Далее следует определить тепловые потери помещения. Для этого учитываются тип и размер окна, высота потолка и прочие параметры. Эти показатели необходимы для определения шага укладки. При высокой потере тепла шаг укладки значительно уменьшается.

Для определения ширины шага и диаметра труб от уровня потери тепла можно воспользоваться сводной специальной таблицей. Важно при этом учесть тот факт, что температура на уровне ног должна равняться 24 градусам, а на уровне головы и выше этот показатель не должен превышать 20 градусов тепла.

Дадим некоторые советы, позволяющие правильно выполнить расчет теплого водяного пола:

  • Протяженность контуров не должна превышать 60-80 метров.
  • Лучше всего расположить коллектор в центре комнаты.
  • Не рекомендуется подсоединять к одному коллектору контуры различной длины, особенно если они длиннее в несколько раз.
  • В центре шаг укладки должен быть 30 сантиметров, по краям данный показатель должен равняться 15 сантиметров.
  • В зонах по краям число рядов равняется шести.
  • Во влажных помещениях всю площадь рекомендуется укладывать с шагом в 15 сантиметров.
  • При установке в комнате более одного коллектора, нужно использовать балансировочные дополнительные клапаны.
  • Минимальное давление, допустимое в коллекторе, равняется 20 кПа.
  • В случае применения на первом этаже теплоизолятора в виде полистирола, его толщина должна равняться 10 сантиметрам, в противном же случае, данный показатель равняется 3 сантиметрам.
  • Нормальный расход воды в контурах должен равняться 0,03-0,07 Л/сек.
  • Рекомендуется регулировать каждую комнату в отдельности.
  • На больших площадях лучше использовать деформационные специальные швы.

Итоги

Итак, прежде чем приступить к самостоятельному монтажу теплого пола любого вида, необходимо ознакомиться с технологией его укладки. Далее следует тщательно произвести все необходимые расчеты. После этого можно приступать к составлению проекта, закупке всех материалов и непосредственному монтажу теплого пола.

Еще одним немаловажным аспектом в данном процессе является техника безопасности, характеристики выбранного вида монтируемого теплого пола, оказываемые нагрузки на напольное покрытие и предназначение помещения, в котором будет осуществляться монтаж теплого пола. Следует учесть и цели монтажа теплого пола – дополнительное либо основное отопление. В любом случае, для каждого помещения в отдельности расчет теплого пола производится в индивидуальном порядке.

Расчет энергопотребления и мощности электрического теплого пола. Как определить мощность теплого пола по водно-электрической схеме

Теплый пол на основе нагревательного кабеля может использоваться как полноценное отопление или как комфортное отопление. При полном обогреве система отопления является единственным источником тепла в помещении. В случае комфортного теплого пола система электрического отопления должна работать параллельно с другой системой отопления, например с радиаторами горячей воды.Полный обогрев компенсирует все тепловые потери и поддерживает постоянную заданную температуру в помещении. Вторая система обогрева направлена ​​на поддержание комфортной температуры на поверхности пола.


К как выбрать мощность системы теплого пола

Для обустройства электрического теплого пола для конкретного объекта необходимо определить удельную мощность (мощность в ваттах на один квадратный метр площади пола (Вт / м2)). В случае полного обогрева мощность должна компенсировать тепловые потери и поддерживать заданную температуру воздуха.Тепловые потери в основном зависят от климатических условий и теплоизоляции. Тепловые расчеты для конкретных условий проводят специалисты. В основном они уже рассчитаны и информация о них имеется.

После определения необходимой мощности системы электрического теплого пола, рассчитываем свободную площадь помещения путем вычитания из общей площади площадей, занятых стационарными объектами: санузлами, туалетами, холодильниками, плитами и т. Д.

В средней полосе России и Украине расчетная удельная мощность системы отопления для новых зданий с использованием теплоизоляционных материалов составляет 100 -150 Вт / м2 , для старых зданий может достигать 180 Вт / м2 и более.Если расчетная установленная мощность превышает 180 Вт / м2, рекомендуем использовать дополнительные системы обогрева.

При комфортном напольном отоплении удельная мощность варьируется в зависимости от конструкции полов, температуры в нижнем помещении, а также наличия и качества теплоизоляции.

Например, для системы комфортного отопления «Теплый пол» в квартире удельная мощность 100 — 130 Вт / м2 для кухни, коридора, детской, спальни и гостиной, и 130 — 150 Вт / м2 для ванные комнаты и туалеты.

В остальных случаях (дорожки с подогревом вокруг бассейнов, полы с подогревом и шезлонги в банях и саунах) удельная мощность рассчитывается исходя из требований заказчика.

Какое оборудование использовать для «Теплого пола»


Нагревательные кабели используются для полноценной системы отопления или для комфортного теплого пола. Девифлекс максимальная линейная мощность 20 Вт / м. Монтажная лента Devifast позволяет безопасно, быстро и легко расширить нагревательный кабель.

Для оптимального комфорта и экономичности системы рекомендуется использовать термостаты с таймерами Devireg .

Как сделать теплоизоляцию для «Теплого пола»

Теплоизоляция в системе «Теплый пол» необходима, когда внизу находится холодное помещение, неотапливаемый подвал или земля и т. Д.). Особого внимания требует установка систем отопления на балконах и лоджиях.

Использование теплоизоляции позволяет снизить затраты на электроэнергию. Целесообразность использования теплоизоляции следует определять для каждого конкретного случая.

В качестве теплоизоляционных материалов рекомендуется использовать сертифицированные изделия с достаточной механической прочностью.

Для предотвращения перегрева нагревательного кабеля необходимо сделать предварительную стяжку между ним и теплоизоляцией или уложить кабель на металлическую сетку… В этом случае стяжка, залитая за один прием, получается монолитной и с армирующим каркасом.

Еще один важный момент — вертикальная теплоизоляция стяжки у наружных стен, предотвращающая теплопотери на границе пола со стеной.

Как сделать гидроизоляцию для «теплого пола»

Гидроизоляцию можно прокладывать как под греющим кабелем, так и над ним, так как кабель может работать при любой влажности. Главное условие, которое необходимо соблюдать, — нагревательный кабель не должен лежать непосредственно на гидроизоляционном слое или под ним.

В случае прокладки кабеля поверх гидроизоляции необходимо сделать минимальную разделительную стяжку или использовать металлическую сетку.

Как закрепить нагревательный кабель

Для прокладки и крепления греющих кабелей рекомендуется использовать монтажную ленту. Стальная лента укладывается с шагом 50 — 100 см. По расходу ленты — в среднем 1-2 м на 1 кв. М. Площади. Крепить ленту к полу можно дюбелями, гвоздями, клеем и т. Д.

Допускается также крепление нагревательного кабеля к стальной арматурной сетке с помощью хомутов.

Какое покрытие можно использовать для «Теплый пол»


Теплый пол на основе греющего кабеля, установленного в стяжку, можно использовать практически под любое напольное покрытие.

Пример:

Расчет теплого пола на основе греющего кабеля для кухни, общей площадью 15 м2.

Вариант 1- Полы с подогревом как полное отопление.

Расчетные теплопотери кухни общей площадью 15 м2 составляют 1500 Вт (100 Вт / м2).

В качестве покрытия — плитка. Холодильник, плита и мойка занимают 5 м2 общей площади помещения.
Отсюда следует, что кабель необходимо прокладывать на свободной площади 10 м2.

1500 Вт x 1,3 = 1950 Вт

DTIP: Мощность 2135 Вт, длина 118 м

10/118 х 100 = 8,5 см

Крепление кабеля Devifast с шагом 2,5 см; шаг прокладки кабеля будет варьироваться от 7,5 до 10 см.

4) Выбор термостата -Для полноценной системы отопления рекомендуются термостаты Devireg с датчиком воздуха.

Вариант 2 — Для комфортного обогрева используется пол с подогревом.

1) Требуемая мощность с учетом запаса прочности: 10 м2 х 100 Вт х 1,3 = 1300 Вт

2) Используем нагревательный кабель подходящей мощности: Мощность 1340 Вт, длина 74 м

3) Расстояние между кабельными линиями: 10/74 х 100 = 13,51 см

При использовании монтажной ленты (крепление кабеля кратно 2,5 см) шаг прокладки кабеля будет чередоваться 12,5 — 15 см.

4) Выбор термостата -Для комфортной системы теплого пола мы рекомендуем термостаты Devireg .

Как установить «Теплый пол» на основе греющего кабеля

1. Определите место установки термостата. Выбираем свободную площадь. Рисуем схему разводки кабеля.

2. Разложите монтажную ленту и прикрепите ее к полу.

3. Прокладываем нагревательный кабель и закрепляем на монтажной ленте, соблюдая этап монтажа.Также на монтажной ленте необходимо закрепить датчик температуры теплого пола в гофрированной трубке и подвести «холодные» выводы нагревательного кабеля и выводы датчика теплого пола к месту установки термостата на стене. .

Трубка датчика теплого пола прокладывается с плавными изгибами и должна быть заглушена со стороны датчика алюминиевой лентой или обычной изолентой для защиты от попадания раствора и мусора.

4.Заливаем раствором.
5. Укладка напольного покрытия.
6. Устанавливаем термостат и подключаем датчик теплого пола, провода «холодного» кабеля и провода сети переменного напряжения 220В.
7. Выдерживаем цементно-песчаную стяжку около 20-30 дней для застывания и включаем термостат на теплый пол.

КОММЕНТАРИЙ!

При проведении строительных работ разные специалисты могут повредить систему греющих кабелей. Чтобы этого не произошло, рекомендуем:

1.Монтаж производить в соответствии с ПУЭ-2001 (Правила устройства электроустановок) и ВТТ КСО-2003 (Временные технические требования на устройство кабельных систем обогрева).

2. В процессе прокладки нагревательного кабеля, заливки стяжки и укладки напольного покрытия необходимо контролировать омическое сопротивление жил нагревательного кабеля и целостность его изоляции.

3. Сразу после установки нагревательного кабеля составьте реальную монтажную схему с указанием основных креплений на месте (расположение концевой втулки и соединительной детали, количество проложенных витков нагревательного кабеля, расположение датчика температуры и т. Д.) .).

4. Довести эту информацию до всех специалистов и предупредить о невозможности проведения специальных работ, которые могут привести к повреждению кабельной системы обогрева (просверлить и долбить пол, проточки пазов, вкрутить саморезы и т. Д.).

В случае повреждения системы нагревательных кабелей DEVI необходимо обратиться в сервисный отдел компании.

Принимая решение об установке теплого пола, многих волнует, сколько будет стоить их обслуживание.Если вы планируете установить систему водяного отопления, то затраты будут равны затратам на энергоноситель: газ, твердое топливо и т. Д. Если у вас будет установлено электрооборудование, то для понимания затрат необходимо: рассчитать расход электроэнергии теплого пола. В этом случае принципиально не важно, какое оборудование будет установлено: нагревательная пленка или нагревательный кабель. Энергопотребление в обоих случаях примерно одинаковое, но при этом пленка требует немного меньше электроэнергии, так как быстрее нагревается.

Важно знать, что расчет мощности теплого пола может быть только приблизительным, так как на точные цифры влияет ряд факторов, которые не всегда можно учесть. Итак, финишное покрытие имеет значение: ламинат нагревается хуже плитки. Также важно учитывать, насколько хорошо помещение сохраняет тепло, какая погода на улице, какую температуру теплого пола вы хотите поддерживать, в каком режиме будет работать система: постоянная работа с простым термостатом или работа с программируемым регулятором с переменной температурой в течение дня и в течение недели…

Как рассчитать мощность теплого пола?

Мощность теплого пола определяет, насколько быстро он прогреется, до какой температуры он может прогреться при определенных условиях. Мощность определяется несколькими параметрами: теплоизоляция помещения и пола, ее материал и толщина; конструкция пола, назначение системы отопления, тип напольного покрытия и др. Мощность может варьироваться от 100Вт / кв. до 400Вт / кв.

Для примерных расчетов расхода электроэнергии будем исходить из средней установленной мощности — 160 Вт / м2.Если в системе используется теплоизоляция и есть термостат, то можно снизить потребление на 60%, и это составит 0,064 кВт / час на квадратный метр отапливаемой площади. Принцип работы термостата невероятно прост. Вы устанавливаете желаемую температуру, и как только она достигается, электрические теплые полы перестают нагреваться. В этом случае, как только температура упадет ниже заданной на полградуса, система снова включится. Поэтому установка системы с терморегулятором снижает энергозатраты на теплый пол.

Еще одной функцией экономии средств является программируемый режим, который снижает поддерживаемую температуру путем выключения системы на ночь или в любое другое время. В целом благодаря ему система не работает около полдня, таким образом, снижается энергопотребление электрического теплого пола.

Но основным средством экономии затрат на теплый пол будет предварительное утепление пола, чем тщательнее вы утепляете пол, тем меньше будут ваши счета за электроэнергию.

В таблице ниже наглядно показано, сколько энергии затрачивается на работу системы с термостатом и наличие программируемого режима. При расчете учитывается, что:

  • работает термостат, снижающий потребление с 0,16 до 0,064 кВт / ч на кв. М .;
  • Стоимость электроэнергии — 4 руб. за 1 кВт;
  • Суммарная наработка электрического теплого пола 12 часов в сутки.

Площадь

Расход в час

Стоимость за час

Расход в сутки

Стоимость в сутки

Ежемесячное потребление

Стоимость в месяц

кв.м.

Ватт

руб. / КВт

Ватт

руб. / КВт

Ватт

руб. / КВт

0,26

3,07

23040

92,16

0,51

1536

6,14

46080

184,32

0,77

2304

9,22

69120

276,48

1,02

3072

12,29

368,64

1,28

3840

15,36

115200

460,80

1,54

4608

18,43

138240

552,96

1,79

5376

21,50

161280

645,12

2,05

6144

24,58

184320

737,28

2,30

6912

27,65

207360

829,44

2,56

7680

30,72

230400

921,60

Чтобы теплый пол имел высокую эффективность на самых начальных этапах его изготовления, важно производить все точные расчеты. Эти расчеты касаются мощности теплого пола. Важно знать, какой расход будет потреблять электрический теплый пол на квадратный метр. Знание этих данных поможет вам сделать отопление, полностью отвечающее потребностям вашего жилого помещения. В этой статье мы рассмотрим основные принципы этого этапа работы.

С чего начать расчет тепловой мощности

Прежде чем определять энергопотребление теплого пола, следует знать следующие данные:

  • Площадь отапливаемого помещения.
  • Характеристики конкретной комнаты. Сюда входит информация о материале стен, конструкции окна и желаемой температуре.
  • Вид отделочного материала пола.
  • Мощность насоса, бойлера и диаметр используемых труб.

Например, деревянный пол (массивная доска) требует большой мощности нагрева. Это связано с тем, что древесина имеет низкий уровень теплопроводности.

На основании этих данных можно точно рассчитать расход труб и необходимое расстояние между метками. Помещение нуждается в утеплении, если потери тепла на 1 м 2 равны 100 Вт. При плохой теплоизоляции потери тепла в среднем до 80 Вт.


Итак, расчет выполняется в несколько последовательных шагов. В первую очередь на бумаге рисуется план комнаты (лучше создать в миллиметровом масштабе). На плане указано расположение дверей / окон. Далее указывается шаг, с которым будет укладываться труба. Это будет зависеть от диаметра труб.Здесь необходимо правильно определить длину одного контура. Если он будет слишком маленьким, то пол будет нагреваться неравномерно, местами оставаясь холодным. Если длина контура большая, то теплоноситель будет слабо циркулировать по трубопроводу, так как увеличивается гидравлическое сопротивление. Поэтому рекомендуемая длина петли — 80-90 метров. Что касается площади обогрева с одним контуром, то это 20 м 2. Если площадь пола больше, то ее нужно разделить на равные участки, сделав два, три или четыре контура.

Для равномерного распределения тепла следует также выбрать соответствующий шаг трубы. В среднем на квадратный метр приходится 5 метров трубы с шагом 25 см. В итоге на 20 м 2 потребуется 100 погонных метров трубы. Для достижения отметки теплоотдачи 50 Вт на м2 теплоноситель должен иметь температуру 30 ° С. Соответственно, чтобы повысить уровень тепла. передача, например, до 80 Вт, шаг уменьшен до 200 мм.

Если шаг между трубами увеличивается, то для достижения нужного уровня теплоотдачи на котле повышается температура теплоносителя.

На основании этих данных можно рассчитать мощность теплого пола с водопроводом. Что касается электрического теплого пола, то здесь будут интересны и другие факты.


Для того, чтобы в помещении было комфортно (дополнительная система обогрева), температура мощности должна колебаться в пределах 110-160 Вт на квадратный метр. Если электрический пол играет роль основного отопления, то мощность достигает до 200 Вт на квадратный метр.Как показывают исследования, основная потребляемая мощность приходится на прогрев отопительной системы. Как только пол достигает заданной температуры, потребление энергии значительно снижается. При наличии автоматики периодически включается система отопления. В среднем он будет работать шесть часов в день. .

Мощность теплого пола: от чего она зависит?

Самый главный критерий выбора теплого пола — мощность. Если вы решили использовать в качестве основной систему электрического отопления, то она должна покрывать пол не менее 70% всей площади.Однако далеко не всегда можно использовать электросистему в качестве основного отопления, поскольку мебель устанавливается на большой части площади. Принимая это во внимание, следует обращать внимание на удельную мощность отопительного контура, и сколько для этого требуется электроэнергии.

  • Основное отопление. Мощность 150-180 Вт / м 2. Мощность должна быть достаточной для обеспечения нормальной температуры в помещении. В результате потребление электроэнергии будет большим.
  • Дополнительный обогрев. Мощность 110-140 Вт / м 2. Этой мощности хватает для поддержания комфортной температуры. Соответственно, потребление потребляемой электроэнергии намного меньше.

Конкретные требования к питанию для конкретной комнаты могут отличаться. Например, на лоджии / балконе мощность должна быть больше, чем на кухне. Ниже приведены средние данные по разным помещениям:

  • Гостиная и кухня — 110-150 Вт / м 2.
  • Застекленная лоджия / балкон — 140-180 Вт / м 2.
  • Санузел — 140-150 Вт / м 2.

Потребляемая мощность в этих случаях является приблизительной. Важным фактором, влияющим на потребление энергии, является то, сколько этажей в доме и на каком этаже находится квартира. Если это первый / второй этаж, то к указанным суммам можно прибавить до 20% акций.

Уютный дом — мечта каждого человека. Вариантов сделать так много, но в основе — комфортная температура, особенно зимой.

На фото — теплые полы в квартире

Этого можно добиться несколькими способами:

  • использовать стандартную централизованную систему отопления;
  • установить автономное газовое или электрическое отопление;
  • установить современные кондиционеры, работающие как на холод, так и на тепло;
  • делают теплый пол, цена которого зависит от многих факторов.

Общая информация

Каждый вариант требует грамотного расчета мощности теплого пола, что позволит ему стать основным источником тепла, если учесть индивидуальные особенности помещения.

Всегда следует соблюдать две постоянные:

  • температура охлаждающей жидкости — 45-50˚С;
  • комфортная температура в гостиной — 18-22˚С.

Если взять за основу эти данные, а также теплофизические свойства оборудования для комплекта теплого пола, то расчет его мощности будет наиболее правильным.

Требуется для:

  • составления проекта;
  • подбор материалов для системы отопления;
  • проверка возможности установки его как основного.

Совет: примите во внимание, что минимальная мощность теплых полов принимается соответствующей теплопотерям дома зимой.

Определить мощность пола

С водяным контуром

Обучение

Для получения желаемого результата необходимо перед монтажом провести сложные расчеты.

В этом вам помогут инструкции, приведенные ниже:

  1. Подготовьте миллиметровую бумагу и карандаш.
  2. Нарисуйте на бумаге план комнаты.Масштаб 2 см = 1 м.
  3. Определите шаг установки трубопровода.
    Для этого не должны нарушаться следующие условия:
    • max S обогрев — до 20 м², если помещение большое, его следует разделить на секторы и рассчитать каждый контур;
    • каждый из них подключен к отдельному входу;
    • длина круга не должна превышать 100 м;
    • учитывают основные места теплопотерь — возле дверных и оконных проемов;
    • расстояние между стеной и трубой не должно превышать 250 мм;
    • между элементами контура должно быть не более 500 мм свободного пространства.Все зависит от диаметра трубопровода.
  1. Измерьте своими руками длину труб на чертеже и преобразуйте их в действительные числа, умножив на коэффициент. К полученному значению прибавьте 2 м для подачи в стояк.
  2. Рассчитайте размер подкладки, обычно это общая площадь помещения. Но, если комната имеет сложную конфигурацию, эта формула не даст правильного ответа.
  3. Закупка, масса которой будет зависеть от ее толщины.

Совет: в определении всех необходимых цифр для устройства пола с водяным контуром нет ничего сложного.
Но лучше перепроверить и делать пошагово, как написано в инструкции к каждому комплекту.

Если вас не устраивает номинальная мощность водяного теплого пола на квадратный метр, вы можете увеличить шаг установки — при высокой температуре или меньше — при недостаточном обогреве.

В то же время необходимо также откорректировать настройки и регулировки пола.Микроклимат в помещении будет зависеть от слаженной работы всех компонентов комплекта.


Кстати, параметры регулировки и регулировки важнее даже шага прокладки трубопровода. Особенно, когда в доме постоянно находятся дети. При расчете также следует учитывать длину (метраж всех труб, входящих в систему) и высоту всей конструкции.

Последний показатель включает в себя сумму высот всех слоев, включая самые мощные:

  • водопровод;
  • стяжка
  • .

В расчетах не обойтись без таких аспектов:

  • пол, на котором установлен теплый пол;
  • тип напольного покрытия;
  • использование подложки и ее тип;
  • количество остекления в комнате.
Плата

Тепловая мощность водяного теплого пола напрямую зависит от каждого из вышеперечисленных значений и требует дополнительных теплотехнических расчетов.

Например, чтобы рассчитать мощность одного контура контура и снизить давление в каждом из них, а также скорость движения теплоносителя, необходимо знать коэффициенты в точном виде.


Поэтому мощность перекрытия обычно принимают равной максимальным тепловым потерям, что соответствует формуле:

Q = S x Δt x B x Fp x Fi x Fm x Fd, где

S — общая площадь помещения;

Δt — разница температур подачи и возврата теплоносителя;

B, Fd, Fp, Fi, Fm — коэффициенты тепловых характеристик материалов, используемых в системе отопления.

Пример
  • Площадь помещения — 25 м 2;
  • комфортная температура в помещении — 20˚С;
  • размер
  • — 5 м х 5 м;
  • комфортная t = 20˚С.

Для экономии и удобства отойдите от внутренних стен комнаты на 250 мм, где обычно устанавливается мебель, и узнайте ее активную площадь:

20 — (5 + 5) x 0,25 = 17,5 м 2.

Следующая составляющая — теплопотери жилого помещения. Цифры находятся в пределах 40-250 Вт / м 2. Перед тем, как рассчитать мощность пола, необходимо знать их точные показатели.

Пример
  • Теплопотери квартиры — 1300 Вт;
  • Теплопотери на 1 м 2 — 80 Вт.
Определение шага прокладки трубопровода

Обратившись к графику теплового потока, вы можете выбрать подходящий шаг для их монтажа.

В нашем случае видно, что компенсация теплопотерь на 1 м 2 возможна с:

  • с шагом 100 мм при Ø 20 мм, когда t теплоносителя будет 31,5 ˚С, и 10 погонных метров потребуется на 1 м 2 этажа. трубы;
  • с шагом 250 мм при Ø20 мм теплоноситель будет иметь t = 38.5˚С, на 1 м 2 трубопровода потребуется 4 погонных метра.


Изменение температуры возможно при изменении диаметра трубы (на 1-1,5 ° С) без изменения шага укладки. Выбирая этап монтажа трубопровода, можно регулировать не только температуру, но и количество труб.

С электрической схемой

При определении мощности электрического теплого пола используйте простую формулу — произведение полезной площади помещения, т.е.е. без места для мебели, по стандартному коэффициенту, который зависит от расположения комнаты.

Если отопление будет основным, то кабель следует прокладывать на 70% и более площади. В качестве основного оборудования мощность электрического теплого пола на 1 м 2 должна быть от 160 Вт, дополнительного — от 120 Вт.


Мощность

В статье представлена ​​информация, которая позволит вам понять суть самообслуживания. определение власти. В видео, представленном в этой статье, вы найдете дополнительную информацию по этой теме.

Лучистое электрическое отопление пола под плиткой

Лучистое отопление пола — это фантастика.

Трудно просыпаться от теплого пола в прохладный день. Лучистое тепло в полу при правильной установке и эксплуатации обеспечивает наиболее комфортное и целенаправленное обогревание жилых помещений.

В этой статье рассказывается о моей установке электрических лучистых полов в недавно отремонтированном солярии и прихожей.

Лучистое отопление обычно доступно в виде электрических или водяных (гидронных) систем.У каждого есть свои преимущества и недостатки. Электрическое лучистое отопление дороже в эксплуатации, но его проще установить. Водяное лучистое отопление дешевле в эксплуатации, но требует сложной сантехники и бойлеров. В обеих моих последних установках использовалось электрическое лучистое тепло.

Системы электрического лучистого отопления относительно удобны для ремонта полов своими руками и их легко добавить при реконструкции полов или при новом строительстве. Кабельные системы электрического теплого пола также имеют умеренную цену и практически не требуют обслуживания.

Электрический обогрев пола также решает проблему добавления тепла в дополнительные помещения, которые было бы трудно подключить к существующей системе отопления, вентиляции и кондиционирования воздуха. Такие помещения, как пристройки, примыкающие, веранды, солярии и гаражи, могут быть отличными кандидатами на установку электрического лучистого отопления в полу, особенно если добавление воздуховодов или водопровода ОВК является затруднительным. Это одна из основных причин, по которой я добавил лучистое электрическое отопление в пол в два моих новейших проекта — небольшую пристройку для прихожей и переделанную пристроенную солярий.

Прошлой осенью я добавил в нашу каюту новую прихожую, добавив под плитку маты с электрическим лучистым обогревом.

Этим летом я занялся солярием, установив все новые окна, двери и напольную плитку. Под плиткой мы установили электрическое лучистое внутрипольное отопление с помощью теплового кабеля, установленного в разделительной мембране с каналами. Этим двум недавним установкам и посвящена данная статья.

Но сначала немного о системах внутрипольного лучистого отопления.

Системы лучистого отопления для пола

Системы лучистого внутрипольного отопления нагревают черный пол и плиты, обеспечивая теплом жилые помещения за счет теплопередачи от пола к окружающим конструкциям и пространству.Лучистое тепло имеет преимущества по сравнению с традиционными системами отопления и некоторые недостатки.

Преимущества и недостатки лучистого тепла по сравнению с традиционным отоплением:

Преимущества системы лучистого отопления:

  • Более эффективны, чем традиционные плинтусы, радиаторы, принудительная вентиляция, обогреватели, печные системы отопления.
  • Системы с очень низким уровнем обслуживания или без него — особенно для электрических систем.
  • Равномерное нагревание с приятными теплыми полами.
  • Эффективное распределение тепла ближе к полу по сравнению спотолки для приточных систем (поднимается теплый воздух).
  • Меньшее движение воздуха, меньшая вероятность движения аллергенов и улучшенное качество воздуха.
  • Отсутствие риска контактных ожогов (радиаторы, печи).
  • Очень тихий или бесшумный (электрический).
  • Может быть относительно легко установить в здании или при ремонте пола.
  • Обычно не для охлаждения или осушения.

Недостатки системы лучистого тепла:

  • Устанавливается под пол.
  • Водяные системы (гидронные) могут протечь или замерзнуть.
  • Относительно высокие затраты на установку (особенно гидравлическую) усложняют укладку на пол.
  • Увеличенная толщина пола.
  • Может не подойти под пол из массивной древесины (быстрое расширение / сжатие).
  • Более медленное начало и смещение тепла.
  • Принудительный воздух позволяет охлаждать и осушать в дополнение к нагреву.

В системах лучистого тепла в качестве источника тепла обычно используется либо нагретая вода (гидравлические системы), либо электрическое сопротивление (электрические системы). У каждой системы есть свои плюсы и минусы:

Преимущества водяной системы лучистого отопления:
  • Котлы, работающие на природном газе, могут быть менее дорогими в эксплуатации по сравнению с электрическими системами.
  • Один котел может питать несколько этажей, а также горячее водоснабжение.
  • Высокоэффективные системы. Низкий уровень шума (котел, насосы).
  • Системы, не требующие особого обслуживания.
Водяная (гидронная) система лучистого отопления Недостатки:
  • Напольный водяной шланг недоступен, если он протекает.Крепежные детали могут повредить трубку.
  • Установка посложнее, требуется бойлер, насосы. Более сложный, чем проект DIY.
  • Требуется некоторое обслуживание — промывка, защита от замерзания в некоторых климатических условиях и т. Д.
Электрическое сопротивление системы лучистого отопления Преимущества:
  • Установка менее сложна — не требуется водопровод, бойлер, газовые магистрали, выхлоп, насосы и т. Д.
  • Относительно простая установка своими руками.
  • Высокоэффективные системы.Отсутствие шума (в некоторых низковольтных системах используются трансформаторы, создающие шум).
  • Обычно техническое обслуживание не требуется.
Электрическое сопротивление системы лучистого отопления Недостатки отопления:
  • Стоимость электроэнергии может быть относительно высокой, особенно в часы пик.
  • Обычно требуется выделенная электрическая цепь (и). В более обширных системах обычно используются цепи на 240 В.
  • Напольные крепления могут повредить провода лучистого отопления во время строительства.

Независимо от типа системы лучистого отопления, которую вы используете, установку любой внутрипольной системы лучистого отопления после постройки дома может быть затруднительно.

Существуют системы лучистого теплого пола, предназначенные для установки под черным полом между элементами каркаса.

Системы лучистого теплого пола сложно установить, поскольку они старые работы

Системы внутрипольного отопления обычно работают лучше всего, когда они устанавливаются внутри конструкции пола, обычно над черновым полом и под отделкой пола. Некоторые системы устанавливают под черным полом, между балками пола, но эти системы, как правило, достаточно неэффективны в зависимости от специфики вашего дома.

Если вы собираетесь реконструировать, или только начинаете строить, или планируете строить, теплый пол — отличный вариант. С нашей запланированной укладкой кафельного пола для нашей солярии, электрическое лучистое тепло под плиткой является идеальным решением.

Зная, что мы хотели бы получить теплый пол под плиткой, нам просто нужно было выбрать электрическое или водяное лучистое тепло.Это решение было легким. Электрическую цепь легко проложить в солярий. Сантехника, бойлер, газовая линия и все другие сложности сделали водную лучистую систему отопления непригодной для использования в этом проекте.

Фактически, 10 лет назад, после того, как мы купили кабину, я обновил нашу разводку и проложил выделенную цепь на 20 А в солярий, ожидая в будущем тепла в полу.

Теперь мне просто нужно было выбрать формат (мат против намотанного кабеля) и напряжение системы (120 В против. 240в), затем закажите материал и установите его.

Форматы лучистого тепла для полов

Электрические системы лучистого отопления для пола используют электрический резистивный нагревательный кабель для преобразования электричества в тепло. В зависимости от производителя часто бывает два основных продукта; маты со встроенным нагревательным кабелем и отдельным нагревательным проводом, закрепленным на черновом полу с помощью зажимов или мембран с пазами.

Коврик для электрического обогрева пола от SunTouch. Нагревательный кабель WarmWire 120 В для теплого пола от SunTouch.Разделительная мембрана под плитку с матрицей для прокладки греющего кабеля под укладку плитки.

Меньшие площади (менее 150 кв. Футов) обычно хорошо работают с матами излучающего тепла, а большие и сложные области хорошо работают с кабелем излучающего тепла.

Есть некоторые исключения, так как некоторые производители изготовят коврики на заказ в соответствии с планами вашего проекта.

Вы можете заказать коврики по размеру в зависимости от площади комнаты. Нагревательные маты продаются в рулонах матов шириной от 2 до 3 футов.

Электрический коврик с встроенным тепловым кабелем, используемый для пола в маленькой прихожей. Этот коврик был залит тонким слоем под плитку. Нагревательный мат залит тонким слоем под плитку в нашей прихожей.

Для нашей солнечной комнаты площадью около 150 квадратных футов я использовал намотанный кабель излучающего тепла, установленный в матрицу мембранной основы.

Проволока электрического нагревательного кабеля наматывается под плитку для нашего проекта большой солнечной комнаты площадью 150 кв. Футов.

Как работают системы обогрева полов

В системах лучистого обогрева полов для обогрева полов и жилых помещений используются трубы с горячей водой или теплые электрические кабели.

Тепло естественным образом перемещается по температурным градиентам от большего к меньшему количеству тепла. Объекты с более высокой температурой передают тепло объектам с более низкой температурой, нагревая их. Этот процесс теплопередачи между телами, разделенными в пространстве, описывается как лучистая теплопередача, что дало имя системам лучистого тепла.

Лучистое тепло перемещается между объектами как невидимая электромагнитная энергия, подобная свету. Типичный пример лучистой теплопередачи — это солнце, согревающее далекие объекты. Большая часть (50-70%) тепла, производимого системами лучистого обогрева пола, находится в форме лучистого тепла.

Кондуктивное тепло, то есть движение тепла внутри твердых объектов или между соединенными объектами, также генерируется системами лучистого тепла. Например, теплопроводное тепло — это тепло, которое вы чувствуете при ходьбе по полу, нагретому системой лучистого тепла.

Кондуктивная теплопередача также играет роль в потерях тепла в системах лучистого обогрева пола. Лучистое тепло, установленное в слоях раствора или бетонных плитах, будет терять тепло за счет теплопередачи от намеченной цели.Кондуктивная теплопередача зависит от теплопроводности проводящего материала.

Металлы, бетон и камень обладают высокой теплопроводностью и легко передают тепло. Материалы с низкой теплопроводностью, такие как; воздух, дерево и изоляция имеют низкую теплопроводность и замедляют или блокируют теплопередачу.

Вот почему надлежащий термический разделительный слой / изоляционный слой так важен для работы системы лучистого отопления.

Изоляционные материалы, которые замедляют или блокируют теплопроводность вдали от предполагаемого пространства обогрева, улучшают производительность и эффективность системы.Неизолированная бетонная плита, например, приведет к огромным кондуктивным потерям тепла от внутрипольных систем лучистого отопления, поскольку тепло перемещается через плиту и от пола и жилого помещения.

Конвекция, передача тепла движением жидкости (воздуха или жидкости), играет второстепенную роль в нагревании лучистым теплом, поскольку воздух прямо над поверхностью теплых полов поднимается вверх и заменяется более холодным воздухом сверху.

Достаточно ли излучаемого в пол тепла, чтобы обогреть мою комнату?

Достаточно ли тепла, создаваемого внутрипольными системами лучистого обогрева, для использования в качестве основного источника тепла для установленных помещений, например, прихожих и соляриев? И если да, то до каких температур?

Ответ зависит от разницы между теплотой, вырабатываемой системой, и теплопотерей конструкций (тепловой нагрузкой).Вырабатываемое тепло легко оценить, исходя из желаемой разницы температур, окон и дверей, размера помещения, дизайна и уровня монтажа.

Системы лучистого обогрева пола (электрические или гидравлические) обычно производят от 10 до 15 Вт на квадратный фут установленной площади. Например, установленный нагревательный мат площадью 100 кв. Футов обычно вырабатывает от 1000 до 1500 Вт тепловой энергии.

Один ватт тепла примерно равен 3,4 BTU (в час):

1 ватт / кв. Фут = 3.4 БТЕ / кв. Фут в час

Следовательно, система площадью 100 кв. Футов должна генерировать от 1000 до 1500 Вт или от 3400 до 5100 БТЕ в час.

Достаточно ли тепла для вашего солярия в середине декабря, когда на улице 30 ℉? Ответ зависит от теплопотерь системы.

Расчет теплопотерь относительно легко произвести с помощью таких онлайн-калькуляторов:

Чтобы получить представление о потенциальных тепловых характеристиках установленной системы лучистого отопления, воспользуйтесь калькулятором для расчета теплопотерь в рассматриваемом помещении при различных температурах и сравните это с количеством тепла, выделяемого системой лучистого отопления.

Коврики для электрического лучистого обогрева обычно производятся для выработки 10, 12 или 15 Вт (34, 41 или 51 БТЕ в час) на квадратный фут установленного мата во время работы. Электрические излучающие незакрепленные кабельные системы производят от 10 до 18 ватт на квадратный фут проложенного кабеля в зависимости от расстояния между проложенными кабелями.

Итак, может ли наш электрический теплый пол согреть наш солярий до 70 в декабре, когда на улице 30 ℉?

В этом примере я буду использовать следующие значения:

  • температура наружного воздуха 30 ℉
  • солярий — это помещение площадью 100 кв. Футов на первом этаже
  • потолки 9 футов
  • две наружные стены
  • шесть окон
  • одна дверь со средней (посредственной) изоляцией
  • желаемая температура в помещении 70 ℉.

С этими значениями наши расчетные тепловые потери составляют ~ 38 Вт / К, или 2900 БТЕ в час при желаемом изменении температуры.

Может ли наше внутрипольное отопление обеспечить 2900 БТЕ?

Что ж, если ваша внутрипольная система покрывает весь пол (за исключением рекомендуемого 6-дюймового отступа стены), у вас будет нагревательный электрический излучающий источник тепла площадью 90 кв. Футов. Таким образом, если система производит 15 Вт / кв. Фут, создаваемые БТЕ будут 4 603 БТЕ в час (90,25 кв. Футов x 15 Вт x 3,4 БТЕ / ватт / час), при условии 100% эффективности системы лучистого тепла.

Большинство систем лучистого тепла не работают со 100% -ным КПД и будут терять значительное количество тепла за пределами целевого жилого помещения. Давайте оценим эффективность нашей сборки на 85%. Следовательно, наша система должна генерировать 85% от 4 603 или 3 912 БТЕ в час, что больше расчетных 2 900 БТЕ, необходимых для желаемого повышения температуры в нашей солярии.

В этом примере вы сможете обогреть солярий площадью 100 квадратных футов до 70 ℉ при температуре наружного воздуха 30 и продолжительности рабочего цикла 74%.

Используя калькулятор, вы можете попробовать различные значения температуры окружающей среды, чтобы получить представление о потенциальных характеристиках вашей системы при понижающихся температурах. Для более точных расчетов вы можете обратиться к подрядчику HVAC, знакомому с расчетами теплопотерь в вашем регионе. Они часто выполняют эти расчеты для систем отопления и кондиционирования воздуха.

Дополнительные рекомендации по установке электрического обогрева пола

При планировании установки электрического излучающего обогрева пола следует учитывать несколько факторов:

  • Размещение электрической коробки и цепи для подключения питания и термостата
  • Термостат лучистого тепла для пола и датчик температуры пола
  • Рекомендации по высоте пола
  • Обработка и изоляция плит / чернового пола
Электрическая коробка и цепь для электрического обогрева пола

Спланируйте свой проект перед тем, как начать.Обдумайте электрические потребности теплого пола, который вы планируете установить, и определитесь с подходящим источником питания для системы. Найдите потребляемую электрическую силу для конкретного продукта, который вы планируете установить, чтобы спланировать источник электрической цепи.

Для небольших проектов с потребляемой энергией менее 5–10 ампер вы можете использовать схему, питающую другие устройства, при условии, что общая потребляемая мощность меньше, чем емкость этой схемы.
В зависимости от продукта, который вы используете, нагревательные маты на 120 В обычно потребляют около 1 А тока 120 В на каждые 10 квадратных футов мата.Так, например, если у вас есть коврик площадью 50 кв. Футов на 120 В, он потребляет ~ 5 ампер.

Решая, можно ли подключиться к существующей электрической цепи, подумайте о других приборах и устройствах, используемых в цепи, чтобы определить, можно ли безопасно использовать цепь для системы лучистого тепла.
Большинство бытовых электрических цепей на 120 В представляют собой цепи на 15 А с допустимым пределом силы тока около 12 А. Однако в некоторых домашних цепях используются цепи 120 В, 20 ампер с безопасным пределом допустимой силы тока около 15 ампер.

Чтобы определить силу тока в цепи, которую вы рассматриваете, перейдите к своей электрической панели и найдите автоматический выключатель для интересующей цепи. На выключателе будет указана сила тока — обычно 15 или 20 ампер.

Кроме того, калибр провода может помочь определить силу тока в цепи. Например, в 15-амперных цепях обычно используется меньший провод 14 г (напечатанный на внешней изоляции провода (обычно белая изоляция), а в 20-амперных цепях следует использовать больший провод 12 г, часто имеющий внешнюю изоляцию желтого цвета.

Еще одна подсказка — это розетка (плагин) электрической цепи. Например, розетки на 15 ампер (плагины) имеют два прямых гнезда, а розетки на 20 ампер также имеют два прямых гнезда, но в более длинном из двух гнезд будет перпендикулярная выемка, выходящая наружу из этого гнезда.

После того, как вы определили силу тока цепи, которую вы хотели бы использовать для системы лучистого тепла, сложите общую ожидаемую нагрузку в цепи, включая систему лучистого тепла.

Например, если общая сила тока составляет менее 12 ампер для цепи на 15 ампер или менее 15 ампер для цепи на 20 ампер, вы сможете использовать эту схему для своего теплового излучения в полу.

Данная оценка действительна только для систем лучистого отопления на 120 В! Некоторые системы лучистого тепла, особенно те, которые имеют площадь более 100 кв. Футов, представляют собой системы на 240 В и обычно требуют выделенной цепи на 240 В.

Стандартный автоматический выключатель на 20 А. Розетка на 20 А. Обратите внимание на горизонтальную выемку на большем гнезде.

Как и в любом электрическом проекте, соблюдайте местные и национальные нормы и проконсультируйтесь с электриком, если вы не уверены или не имеете квалификации для работы с электрическими цепями.

Стоимость найма электрика для запуска выделенной цепи для вашего проекта напольного покрытия, скорее всего, окупится, если у вас есть какие-либо сомнения относительно правильности работы для системы.

Электрический излучающий термостат для пола и датчик пола

Существует множество термостатов лучистого тепла от разных производителей.Большинство производителей предлагают несколько вариантов термостатов, от самых простых до программируемых термостатов с возможностью подключения к Wi-Fi.

Я пробовал несколько разных термостатов, и мне больше всего нравятся программируемые устройства с сенсорным экраном Tekmar (под брендом SunTouch). Они просты в установке, интуитивно понятны в использовании и приятны на вид. Они также предлагают множество цветов дисплеев, подходящих к разным домашним декорам и стилям.

У нас они есть в нашем основном доме и в хижине, и они мне очень нравятся!

Программируемый WiFi-термостат SunTouch (Tekmar) для систем электрического лучистого отопления.

Большинство термостатов включают датчик температуры пола с термостатом. Датчики температуры пола жизненно важны для правильного функционирования вашей системы теплого пола. Их следует установить в соответствии с инструкциями производителя и подключить к термостату системы.

Требования к высоте пола для систем электрического обогрева пола

Добавление ковриков для обогрева пола к конструкции пола обычно увеличивает высоту пола от 1/2 до 1 дюйма или более. При планировании увеличенной толщины пола учитывайте высоту смежных полов, высоту дверей и отделку, а также другие аспекты отделки.

Производители знают о высоте пола, и многие предлагают более тонкие изделия, чтобы уменьшить толщину, которую добавляет система обогрева. Кроме того, электрические системы теплого пола обычно имеют более низкий профиль по сравнению с гидравлическими системами.

Дополнительные материалы, добавленные к конструкции пола, такие как плиточная подкладка, разделительные мембраны, изоляция или изоляционная подкладка, увеличивают толщину пола. Многие из этих продуктов предлагаются различной толщины, чтобы соответствовать высоте пола.Например, большинство подкладных плит для плитки предлагается толщиной 1/4 дюйма для использования в полу.

Общая толщина пола зависит от нескольких переменных, таких как состояние основания пола и необходимость в усилении, выравнивающих составах, подкладке плитки или разделительных мембранах, а также слоях изоляции.

Излучающая теплоизоляция необходима для эффективной системы

Это важно! Системы лучистого отопления, особенно внутрипольные, значительно выигрывают от теплового разделения и надлежащей изоляции за установленными источниками лучистого тепла.

Общее правило для систем лучистого обогрева заключается в размещении теплоизоляции, по крайней мере, в два раза превышающей R-значение позади приспособления для лучистого обогрева по сравнению с лицевой стороной или желаемым направлением обогрева. Например, если общее значение R материалов чернового пола на законченной стороне установленной системы лучистого отопления равно R-1, изоляция не менее R-2 должна быть установлена ​​за системой лучистого отопления.

Если источник лучистого тепла установлен над бетонной плитой, в идеале бетонная плита должна быть изолирована под плитой.Кроме того, термический разрыв или более тонкие продукты на основе жесткого пенопласта, такие как Go Board, могут улучшить отзывчивость системы отопления за счет снижения тепловых потерь на большую тепловую массу бетонной плиты.

Предположим, что система лучистого обогрева установлена ​​над черным полом. В этом случае нижняя сторона чернового пола должна быть изолирована в соответствии с нормами не менее 3 дюймов стекловолоконной изоляцией с использованием пенопласта или жесткого пенополиизоцианурата или его эквивалента. Чем больше, тем лучше, особенно если нижняя сторона представляет собой некондиционное пространство, такое как подвал или неотапливаемый подвал.

Неизолированный черный пол под системой лучистого теплого пола, как правило, обеспечивает неэффективную и недостаточную производительность. Это связано с тем, что лучистое тепло движется во всех направлениях вниз по температурным градиентам, а не просто вверх, как динамика конвекционного тепла. Следовательно, недостаточно изолированные помещения под системами лучистого тепла будут чрезмерно теплыми, а предполагаемое жилое пространство стоит выше системы лучистого тепла.

Неизолированные системы лучистого тепла, установленные на бетонные плиты или аналогичные плиты без теплового разрыва, будут работать медленно и плохо, теряя большое количество тепла для нагрева бетонной массы плиты.Это особенно верно, если плита не изолирована, так как тепло, которое проникает в плиту, теряется для окружающей земли.

Go Board — это подкладка для плитки из жесткого пенопласта, которая представляет собой элегантное решение для установки излучаемого тепла под плитку со значением R 2,3 для панелей 1/2 ″ (1/4 ″ = R-1,3, 5/8 ″ = R-2,9, 1 ″ = R-5, 1 1/2 ″ = R-7,5, 2 ″ = R-10).

Помимо теплоизоляции, следует учитывать основание и дополнительные факторы, такие как необходимость выравнивания / выравнивания поверхности в контексте желаемой отделки пола.

При использовании плитки вам понадобится достаточно ровный пол, в зависимости от типа и размера плитки, которую вы планируете использовать. Для плитки вам также понадобится подходящая поверхность для нанесения тонкого раствора для укладки плитки. Черновой пол из фанеры может подойти, но часто требует обработки или герметизации для надлежащего отверждения в тонком слое.

С отделкой плиткой и теплом пола трудно превзойти слой Go Board на плите под воздействием лучистого тепла. Кроме того, подкладочная плита GoBoard обеспечивает отличную изоляцию для системы отопления, водонепроницаемую поверхность и пароизоляцию, а также идеальную поверхность для нанесения тонкозастывающего раствора.

Полы для лучистого тепла

Над внутрипольными системами лучистого отопления можно укладывать различные полы. Плитка обычно является лучшим выбором, чем лучистое отопление, но паркет, линолеум или виниловые полы и даже ковровое покрытие можно укладывать поверх лучистого тепла. Но разные материалы будут по-разному работать с лучистым теплом.

Керамика, фарфор, камень и аналогичные материалы хорошо передают тепло, обеспечивая быструю передачу нижележащего лучистого тепла. Эти материалы также имеют значительную тепловую массу, сохраняя тепловую энергию и сглаживая подачу тепла.

Ковры, винил, ковровые покрытия, коврики и материалы для деревянных полов, с другой стороны, имеют изолирующие свойства, замедляя передачу лучистого тепла в жилые помещения и снижая эффективность системы. В результате эти материалы менее долговечны по сравнению с источниками тепла и, как правило, должны использоваться только в тех областях, где температура пола ограничена максимальной рабочей температурой 80.

Согласно рекомендациям, опубликованным Национальной ассоциацией деревянных полов (NWFA) в 2019 году, максимальная температура для систем лучистого отопления с деревянными напольными покрытиями составляет 80 ℉.

Если вы планируете укладывать деревянный пол над системой лучистого обогрева, исследуйте изделия из дерева, которые вы считаете подходящими для систем обогрева полов. Как правило, инженерные полы с фанерным сердечником хорошо работают с системами обогрева пола.

Изделия из цельной древесины, особенно широкие разрезы, имеют тенденцию расширяться и сжиматься при резких перепадах температуры при установке на лучистом тепле и обычно приводят к короблению пола, трещинам, искривлению и другим проблемам, связанным с движением.Если используются изделия из цельной древесины, более узкие доски с вертикальными углами пропила (четверть пиленая, рифленая) имеют тенденцию быть более стабильными по размеру и лучше подходят для полов с лучистым обогревом. Деревянные полы выиграют от температурных ограничений — скажем,

.

При укладке деревянного пола поверх систем лучистого обогрева проконсультируйтесь с производителем продукта, чтобы убедиться в совместимости. При укладке деревянного пола поверх электрического или водяного теплого пола при планировании системы крепления учитывайте возможность проникновения крепежа и повреждения нагревательных элементов. Клейкая техника может быть лучше всего, но убедитесь, что клей, который вы используете, разрешен для использования на теплом полу. Производители часто предлагают максимальную рабочую температуру и для напольных покрытий.

Если вы считаете линолеум, винил или другие изделия отделкой для теплого пола, обратитесь к производителю, чтобы проверить совместимость с подогревом пола, и используйте только клеи, предназначенные для теплого пола.

> Как я установил электрическое излучение в полу под плиткой на террасе для загара без кондиционирования

Мой проект заключался в том, чтобы добавить тепла к неизолированному плиточному полу нашего не кондиционированного пола веранды для солярия.

Я планировал укладывать цементную (энкаустическую) плитку под отделку пола. Поскольку пол сделан из неизолированного бетона, необходимо было добавить теплоизоляционный слой. Я решил использовать для этой цели плиточную подкладку GoBoard 1/2 дюйма. Материал 1/2 ″ имеет R-значение R-2. 3. Неплохо!

Размер комнаты 15,5 ‘x 10’ (155 кв. Футов) только приближается к размеру проектов, которые, вероятно, выиграют от систем отопления на 240 В. Несмотря на то, что для комнаты такого размера есть рулонные нагревательные маты, более целесообразно укладывать намотанный нагревательный провод на развязывающую мембрану.

Итак, вот сводка моих слоев пола, сверху вниз:

  • Бетонная плита (неизолированная)
  • Краска жидкая гидроизоляционная мембрана (RedGard®)
  • Полимерно-модифицированный тонкослойный раствор, шпатель с квадратными зубцами 1/4 ″
  • GoBoard 1/2 ″ с изоляцией, водонепроницаемая, подкладная плита для изоляции, гидроизоляция (швы заделаны)
  • Полимерно-модифицированный тонкослойный раствор, шпатель с квадратными зубцами 1/4 ″
  • Фетровая полимерная развязывающая матричная мембрана для крепления нагревательного кабеля, изоляционный слой
  • Самовыравнивающаяся шпаклевка (LevelQuik® RS) для выравнивания / выравнивания
  • Полимерно-модифицированный тонкослойный раствор, шпатель с квадратными зубцами 1/4 ″
  • Энкаустический цемент Плитка 8 ″ x8 ″, 3/16 ″ полимерно-отшлифованный цементный раствор (Polyblend®)

Вот слои на нескольких изображениях:

Подложка для плитки GoBoard с полиизоциануратной сердцевиной обеспечивает отличный термоизоляционный разрыв по бетонным плитам для электрических систем обогрева полов. Разъединяющая матрица нагревательного провода SunTouch HeatMatrix, установленная с полимодифицированным тонкосиленным раствором поверх изоляционной плиты для плитки GoBoard Кабель электрического лучистого обогрева SunTouch WarmWire, установленный в разъединяющую мембрану SunTouch HeatMatrix с самовыравнивающейся подкладкой LevelQuik RS, используемой для выравнивания и выравнивания поверхности. цементная плитка, уложенная поверх электрического излучающего кабеля для обогрева пола SunTouch WarmWire.

Читайте дальше, чтобы познакомиться с нашей системой электрического лучистого обогрева пола с использованием электрического нагревательного кабеля SunTouch и разделительной монтажной мембраны матрицы.

Электрическое лучистое отопление полов над слоями плиточного пола

Калькулятор размера помещения с электрическим отоплением

Конструкция электрического отопления

Наша простая таблица размеров помещения для электрического обогрева идеально подходит для расчета количества обогревателей, необходимого для обогрева одной или двух комнат. Если вам требуется:

  • Проект отопления для всего объекта
  • Таблица размеров помещений в старом здании с плохой изоляцией
  • Таблица размеров помещений для новостройки с очень хорошей изоляцией

Мы рекомендуем вам загрузить нашу форму запроса на проектирование системы отопления после заполнения, отправив ее по электронной почте на адрес sales @ electricpoint.com, мы предоставим точный расчет отопления в течение 14 рабочих дней. Для нескольких объектов, пожалуйста, отправьте нам масштабные чертежи вместе с любыми требованиями к конструкции. Если вам нужна дополнительная помощь или руководство, позвоните нам по телефону 0203 994 5470 или воспользуйтесь нашей контактной формой.

Какой тип обогревателя?

Накопительные обогреватели

идеально подходят для жилых комнат, столовых, холлов, холлов, лестничных площадок, офисов или учебных кабинетов. Рекомендуемая температура для столовых и жилых комнат составляет 21 ℃, а для офисов и кабинетов — 18 ℃. Для расчетов в офисе, пожалуйста, загрузите наш справочник по отоплению.Мы настоятельно рекомендуем накопительные нагреватели Dimplex Quantum для максимальной эффективности. Нашим самым продаваемым накопительным нагревателем является серия Dimplex XLE.

Электрические радиаторы и панельные обогреватели идеально подходят для спален, также используются в ванных комнатах, подсобных помещениях, столовых, холлах, офисах, кабинетах, коридорах зимних садов и лестничных площадках. В приведенных ниже таблицах указаны размеры комнат для спален, где рекомендуемая температура составляет 18 ℃ (также применимо для офиса), для других типов комнат, пожалуйста, загрузите наше подробное руководство по отоплению.Мы настоятельно рекомендуем электрические радиаторы Dimplex QRAD и панельные обогреватели Dimplex PLXE, которые являются нашими самыми продаваемыми моделями.

Как рассчитать обогреватель какого размера для комнаты?

Наш калькулятор электрического обогрева фактически работает в обратном порядке, вместо того, чтобы измерять, как быстро накапливается тепло в комнате, мы измеряем, насколько быстро тепло уходит из комнаты (известная как потеря тепла), тогда можно фактически определить правильный размер или количество электрических обогревателей что потребуется для обогрева комнаты. Определив площадь пола, конструкцию стен и количество внешних стен, мы можем определить общее количество киловатт, необходимых для обогрева комнаты (мы предполагаем, что стандартная высота потолка составляет 2,4 м). Если у вас есть какие-либо различия, пожалуйста, свяжитесь с нами для оформления. Расчеты в наших таблицах помогут вам выбрать любой обогреватель прямого действия, такой как панельный обогреватель, конвектор, электрический радиатор или современный накопительный обогреватель с номинальной мощностью.

Пожалуйста, выберите тип стены комнаты из представленных ниже вариантов, чтобы найти правильную таблицу размеров отопления:

Жилые комнаты с изолированными стенами
Гостиные с пустотными стенами
Гостиные с массивными стенами

Спальни с изолированными стенами с полостями
Спальни с глухими стенами
Спальни с глухими стенами

Кухни с изолированными стенками полостей
Кухни с изолированными стенками
Кухни со сплошными стенами

Коммерческое отопление, включая офисы с изолированными стенками
Коммерческое отопление, включая офисы с пустотными стенами
Коммерческое отопление, включая офисы с массивными стенами

Жилые комнаты с изолированными пустотелыми стенами
  • Стены с изолированной полостью
  • Высота потолка 2.
  • Комнатная температура 21 ℃
Площадь Количество внешних стен
м2 1 2 3
12 1,12 кВт 1,28 кВт 1,68 кВт
16 1,36 кВт 1,60 кВт 1,92 кВт
20 1.68 кВт 1,92 кВт 2,32 кВт
24 2,08 кВт 2,32 кВт 2,64 кВт
28 2,16 кВт 2,48 кВт 2,96 кВт
32 2,40 кВт 2,72 кВт 3,20 кВт

Гостиные с пустотелыми стенами
  • Стены пустот
  • Высота потолка 2.4М
  • Комнатная температура 21 ℃
Площадь Количество внешних стен
м2 1 2 3
12 1,60 кВт 1,92 кВт 2,48 кВт
16 1,84 кВт 2,32 кВт 2,88 кВт
20 2. 32 кВт 2,72 кВт 3,44 кВт
24 2,64 кВт 3,12 кВт 3,76 кВт
28 2,96 кВт 3,44 кВт 4,24 кВт
32 3,28 кВт 3,76 кВт 4,72 кВт

Жилые комнаты с массивными стенами
  • Сплошные стены
  • Высота потолка 2.4М
  • Комнатная температура 21 ℃
Площадь Количество внешних стен
м2 1 2 3
12 1,84 кВт 2,16 кВт 2,88 кВт
16 2,08 кВт 2,48 кВт 3,20 кВт
20 2.64 кВт 3,12 кВт 3,92 кВт
24 2,96 кВт 3,44 кВт 4,32 кВт
28 3,28 кВт 3,92 кВт 4,80 кВт
32 3,52 кВт 4,32 кВт 5,28 кВт

Спальни с изолированными полыми стенами
  • Стены с изолированной полостью
  • Высота потолка 2.
  • Комнатная температура 18 ℃
Площадь Количество внешних стен
м2 1 2 3
8 0,8 кВт 0,9 кВт 1,4 кВт
12 0,8 кВт 1,4 кВт 1,8 кВт
16 0.9 кВт 1,6 кВт 2,1 кВт
20 1,0 кВт 1,8 кВт 2,4 кВт
24 1,0 кВт 1,9 кВт 2,5 кВт

Спальни с пустотелыми стенами
  • Стены пустот
  • Высота потолка 2,4 м
  • Комнатная температура 18 ℃
Площадь Количество внешних стен
м2 1 2 3
8 0. 8 кВт 1,0 кВт 1,4 кВт
12 0,9 кВт 1,4 кВт 1,8 кВт
16 1,0 кВт 1,7 кВт 2,1 кВт
20 1,2 кВт 2,0 кВт 2,4 кВт
24 1,2 кВт 2,1 кВт 2.5 кВт

Спальни с массивными стенами
  • Сплошные стены
  • Высота потолка 2,4 м
  • Комнатная температура 18 ℃
Площадь Количество внешних стен
м2 1 2 3
8 0,8 кВт 1.3 кВт 1,7 кВт
12 0,9 кВт 1,8 кВт 2,3 кВт
16 1,2 кВт 2,1 кВт 2,7 кВт
20 1,4 кВт 2,2 кВт 3,1 кВт
24 1,5 кВт 2,3 кВт 3,4 кВт

Кухни с изолированными стенками

Для всех кухонь с изоляцией стен с полыми стенками предпочтительнее прямой обогрев.

Кухни со стенками для полостей

  • Сплошные стены
  • Высота потолка 2,4 м
  • Комнатная температура 18 ℃
Площадь Количество внешних стен
м2 1 2 3
10 1,12 кВт 1,6 кВт 1,92 кВт
12 1.36 кВт 1,84 кВт 2,32 кВт
14 1,6 кВт 2,08 кВт 2,48 кВт
16 1,68 кВт 2,32 кВт 2,72 кВт

Кухни со сплошными стенами
  • Сплошные стены
  • Высота потолка 2,4 м
  • Комнатная температура 18 ℃
Площадь Количество внешних стен
м2 1 2 3
10 1. 28 кВт 1,68 кВт 2,32 кВт
12 1,52 кВт 2,16 кВт 2,64 кВт
14 1,68 кВт 2,40 кВт 2,88 кВт
16 1,92 кВт 2,64 кВт 3,12 кВт

Коммерческое отопление, включая офисы с изолированными стенками для полостей
  • Сплошные стены
  • Высота потолка 3М
  • Минимальная изоляция крыши 75 мм
  • Комнатная температура 21 ℃
Площадь Количество внешних стен
м2 1 2 3
15 1.68 кВт 2,08 кВт 2,64 кВт
20 2,08 кВт 2,56 кВт 3,12 кВт
25 2,40 кВт 3,04 кВт 3,60 кВт
30 2,88 кВт 3,52 кВт 4,16 кВт
40 3,92 кВт 4,48 кВт 5. 36 кВт
50 4,48 кВт 5,28 кВт 6,08 кВт

Коммерческое отопление, включая офисы с пустотелыми стенами
  • Сплошные стены
  • Высота потолка 3М
  • Минимальная изоляция крыши 75 мм
  • Комнатная температура 21 ℃
Площадь Количество внешних стен
м2 1 2 3
15 2.00 кВт 2,56 кВт 3,52 кВт
20 2,40 кВт 3,12 кВт 4,00 кВт
25 2,72 кВт 3,68 кВт 4,56 кВт
30 3,36 кВт 4,24 кВт 5,20 кВт
40 4,40 кВт 5,36 кВт 6. 72 кВт
50 4,95 кВт 6,24 кВт 7,44 кВт

Коммерческое отопление, включая офисы с массивными стенами
  • Сплошные стены
  • Высота потолка 3М
  • Минимальная изоляция крыши 75 мм
  • Комнатная температура 21 ℃
Площадь Количество внешних стен
м2 1 2 3
15 2.16 кВт 2,96 кВт 4,08 кВт
20 2,64 кВт 3,52 кВт 4,48 кВт
25 2,96 кВт 4,08 кВт 5,20 кВт
30 3,52 кВт 4,72 кВт 5,84 кВт
40 4,80 кВт 5,92 кВт 7. 68 кВт
50 5,28 кВт 6,80 кВт 8,40 кВт

Если вам нужна дополнительная помощь или руководство, позвоните нашей команде профессионалов по телефону 0203 994 5470, напишите нам по адресу [email protected] или воспользуйтесь нашей контактной формой.

(PDF) Моделирование системы теплого пола, питаемой от теплового насоса

МУХАММАД АКМАЛЬ и др.: МОДЕЛИРОВАНИЕ И МОДЕЛИРОВАНИЕ СИСТЕМЫ ПОДПОЛЬНОГО ОТОПЛЕНИЯ…

DOI 10.5013 / IJSSST.a.17.35.28 28.1 ISSN: 1473-804x онлайн, 1473-8031 print

Моделирование и имитация системы теплого пола, питаемой от теплового насоса

Мухаммад Акмал

Департамент электротехнической и компьютерной инженерии

Инженерный колледж

Университет Абу-Даби

Абу-Даби, ОАЭ

[email protected]

Брендан Фокс

Энергия, мощность и интеллектуальное управление

Школа электроники, электротехники и CS

Королевский университет Белфаста

Белфаст, Северная Ирландия, Великобритания

b. [email protected]

Аннотация. В данной статье описывается тепловая мощность и тепловая инерция системы теплого пола, питаемой от теплового насоса.

Тепловая модель системы на основе MATLAB / SIMULINK была разработана и представлена ​​с подробными математическими

уравнениями. Для этого используются экспериментальные результаты и фактические измерения для моделирования накопления энергии и температуры.

Параметры, используемые для модели: температура, мощность и потребление энергии, постоянная времени и режим реального времени.Следовательно, эту модель

можно использовать для определения изменений температуры в здании, производства тепловой энергии, потребления электроэнергии, мгновенной мощности

, коэффициентов производительности в масштабе реального времени на основе различных стратегий управления, используемых для управления спросом.

Модель, разработанная в SIMULINK, учитывает эффект аккумулирования тепла в системе теплых полов, а также

тепловой массы самого здания. Для разработки этой модели были выполнены расчеты теплопотерь. В статье также используются различные стратегии управления

для работы разработанной модели. Наконец, модель была обновлена, чтобы учесть влияние переменного коэффициента

на производительность теплового насоса, и представлены результаты, чтобы выделить текущую тепловую энергию, электрическую энергию, рабочий

COP и средний COP.

Ключевые слова — накопление энергии, тепловой насос, моделирование и моделирование, тепловая инерция, тепловая модель, теплые полы

I.ВВЕДЕНИЕ

В качестве экспериментальной установки использовалась система подогрева полов с помощью теплового насоса

в лаборатории возобновляемых источников энергии Королевского университета

Белфаст (QUB).

Основная причина выбора системы теплого пола

заключается в том, что ее большая теплоемкость позволяет хранить более дешевую электроэнергию

в виде тепловой энергии. Его можно заряжать

в разных режимах зарядки, т. е.е. при низком спросе

при ветре или при низких ценах в реальном времени. Тепловой накопитель

и постоянная времени позволяют выключить тепловой насос

на несколько часов, чтобы избежать пиковых нагрузок системы

периодов, периодов слабого ветра или периодов высоких цен. Накопитель

также может использоваться для обеспечения аварийного резерва для согласования спроса и предложения мощности

.

существенно не изменится в течение времени слива из пола.

Преимущества систем теплого пола, снабжаемых

тепловыми насосами, по сравнению с традиционными системами отопления на основе радиаторов

— это большая площадь излучения тепла и низкая рабочая температура воды

. Преимущество в том, что

большая часть тепла извлекается из внешнего воздуха или земли

вместо использования источника топлива. Полы с подогревом обеспечивают равномерную температуру

по полу, в отличие от концентрированных обогревателей

. Эффективность напольного отопления составляет

, что также лучше, чем у радиаторных обогревателей, поскольку с крыши отводится на

меньше тепла [1]. Для теплого пола требуется вода с низкой температурой

(от 35 ° C до 45 ° C) по сравнению с радиаторами

(60 ° C и выше). Первый — это диапазон, в котором тепловые насосы

имеют более высокий КПД. Следовательно, теплый пол

с тепловыми насосами является подходящей комбинацией [2].

Комфортные полы с подогревом от тепловых насосов становятся все более популярными

, а технология

становится экономически жизнеспособной из-за недавних разработок и конкуренции

.В дополнение к сокращению выбросов, тепловые насосы

можно рассматривать как второстепенную нагрузку, которая может быть отключена

в аварийных условиях пониженной частоты

[3]. Установка около 12000 единиц на данный момент в Ирландии

с дальнейшими установками в рамках рассмотрения

, побудила исследовательскую работу по использованию возможности аккумулирования теплового насоса

, а также обеспечения гибкости нагрузки

для облегчения сильного ветра. проникновение [4].Возможность хранения

тепловых нагрузок, позволяя заряжать их

в периоды сильного ветра и отключать

во время затишья, может активно участвовать в DSM

и в конечном итоге использоваться для управления изменчивостью ветра. В

в дополнение к поддержке работы системы DSM также может играть важную роль в управлении изменчивостью ветра [5-7].

Климатические условия Великобритании и Ирландии идеальны для

, использующего отопление помещений и воды с помощью тепловых насосов, поскольку

имеют более высокий коэффициент полезного действия.Использование тепловых насосов

дополнительно экономит топливо и снижает нежелательные выбросы.

Экспериментальные результаты показывают, что подходящее управление гибкими нагрузками

может использоваться для обеспечения DSM, а также аварийного

резерва, который, как показано, быстрее, чем вращающийся резерв

из поколения [5]. Результаты моделирования показывают, что DSM, в

в виде тепловых насосов, может позволить изменить форму спроса

, снизить нагрузку на линейное изменение для традиционной генерации на

и улучшить резервную нагрузку.

Для типичного теплового насоса рабочий цикл показан на

Рис. 1. Испаритель термически взаимодействует с источником тепла

, и двухфазная парожидкостная смесь хладагента

, поступающая в испаритель, частично меняет фазу из жидкости.

в пар из-за тепла, поглощаемого источником. Затем,

, хладагент дополнительно сжимается без теплопроводности

до насыщенных паров, температура которых

увеличивается при более высоком давлении через компрессор.В

Garage с подогревом полов — все, что вам нужно знать

Вот хорошие новости для тех, кто любит «редукторы» — удобное и доступное отопление подходит не только для комнат вашего дома. Теплый пол — отличный вариант даже для вашего гаража! Фактически, гаражный лучистый пол с подогревом — лучший способ согреть пол, когда вы ползаете под своей машиной. Кроме того, он также сушит пол и нагревает воздух во всем гараже, делая пространство комфортным и предохраняя хранящиеся предметы от опасности образования плесени и грибка.


Если вы устали бегать по холодному бетону, пока занимаетесь проектами на своем хот-роде или семейном автомобиле, лучше всего подойдет гаражный лучистый пол с подогревом. Кроме того, эти системы работают тихо, в отличие от обогревателей или электрических воздуходувок. Слушайте любимую музыку или легко продолжайте беседу с коллегами по работе или семьей, пока вам тепло и сухо.

Если вы готовы значительно улучшить свое рабочее место, вот все, что вам нужно знать о теплом полу в гараже и о том, как начать его установку в домашнем гараже.

Что такое теплый пол в гараже?

Системы лучистого отопления поставляют тепло непосредственно полу или другой поверхности вашего дома. Эти системы получили свое название от метода передачи тепла — тепло излучается от компонентов системы через поверхность в воздух через инфракрасное излучение. Подумайте, как нагревается плита, и вы чувствуете тепло, когда приближаетесь к плите. Благодаря лучистому напольному отоплению компоненты системы отопления встраиваются в пол помещения, включая ваш гараж.


Лучистое отопление — более эффективное средство обогрева любого помещения. Нет потерь тепла через воздуховоды, и он нагревается намного более равномерно, чем обогреватели плинтуса или воздушные обогреватели, обычно используемые в гаражах. Кроме того, если вы страдаете аллергией, лучистое тепло не распространяет аллергены по воздуху. Современные системы лучистого отопления энергоэффективны и могут использовать различные средства для распределения тепла, как мы рассмотрим ниже.


Самые популярные типы лучистого теплого пола используют электрические компоненты или жидкие (гидронные) компоненты, которые проходят по полу для распространения тепла.У каждого типа системы есть свои преимущества. Давайте обсудим оба типа.

Электрические излучающие полы

Обычно используются электрические кабели или маты из электропроводящего пластика, которые монтируются внутри материала пола или на черновом полу под напольным покрытием. Они особенно эффективны и экономичны, если они встроены в бетонный пол, способный удерживать тепловую массу в течение более длительных периодов времени. Напольные покрытия, такие как плитка или древесина твердых пород, не будут удерживать тепло так долго, что заставляет нагревать пол в течение более длительных периодов времени.


Большинство полов в гаражах бетонные, поэтому встраивание электрической системы в новый пол гаража является идеальным решением. Для существующих полов рекомендуется «мокрое» нанесение, при котором электрические кабели или маты прокладываются поверх существующего пола и сверху заливаются несколько дюймов нового бетона.

Гидравлические (жидкостные) системы — самые популярные и экономичные из имеющихся систем обогрева полов в гаражах. Эти инновационные системы передают нагретую воду по трубам, которые находятся под напольным покрытием или внутри него.Систему можно подключить к имеющемуся водонагревателю. Другой водонагреватель, установленный специально для этой цели, или другой тип бойлера.


Трубки подключаются к насосам и клапанам, которые могут регулировать поток воды с помощью термостата для регулирования температуры в помещении.

Как установить теплый пол в гараже?

Как электрические, так и водяные системы обогрева пола в гараже можно установить двумя способами. Если вы строите новый гараж, лучше всего установить систему внутри самого бетонного пола.Электрические компоненты или каналы трубопровода для жидкости соединяются с арматурной арматурой или проволочной сеткой, что обеспечивает эффективную установку с большой массой. Затем обычным способом заливается бетон, чтобы сформировать пол гаража. Система подключается к источнику электричества и / или горячей воды и термостату для контроля температуры.

Гаражный лучистый пол с подогревом внутри бетонной плиты нагревает плиту и окружающий воздух над ней. Обеспечивает комфортную температуру, а также сухую теплую поверхность, на которой можно лежать под автомобилем во время работы.Мы рекомендуем установить достаточную изоляцию на стенах и потолке вашего гаража, чтобы сохранить тепло в гараже и предотвратить потери и более высокие счета за электричество.


Для существующих полов в гаражах электрические маты или трубы для жидкости можно уложить в виде рисунка на пол, а затем залить слоем гипса или бетона. Компоненты системы обогрева пола в гараже невелики и не потребуют больше двух-трех дюймов дополнительного материала. Это не поднимет значительно пол вашего гаража и все же должно оставить достаточно места для транспортных средств.Обязательно измерьте высоту своего гаража перед тем, как выбрать этот метод установки.


При таком типе установки электрические и / или жидкие компоненты затем подключаются к водонагревателю и термостату для регулирования температуры. Утепление стен и потолка вашего гаража повысит эффективность системы и сэкономит ваши деньги.

Насколько эффективен теплый пол в гараже?

Как электрическое, так и водяное отопление пола в гараже — очень эффективные методы обеспечения теплого и сухого хранилища и рабочего пространства.Обычно они потребляют столько же или меньше энергии, чем другие распространенные системы отопления, такие как воздушные обогреватели или обогреватели.


В зависимости от типа установки и размера вашего гаража. Обычно вы можете предположить, что ваша система обогреваемого пола в гараже будет потреблять около 12 ватт энергии на квадратный фут за каждый час использования. Это означает, что гараж площадью 100 квадратных футов будет потреблять 1200 Вт каждый час, когда система находится в активной работе. Это примерно на 300 Вт меньше, чем у среднего электрического обогревателя ракетного типа.


Кроме того, теплый пол в гараже равномерно увеличивает температуру помещения. Обогреватели или обогреватели с принудительной подачей воздуха нагревают ближайшую к обогревателю сторону комнаты быстрее. Делаем очень горячую сторону и более холодную сторону комнаты.

Расчет использования энергии лучистого отопления пола в гараже

При планировании установки системы лучистого теплого пола в гараже. Вы можете легко рассчитать приблизительное энергопотребление для гаража вашего дома.

Для выполнения расчетов выполните следующие действия:

  1. Рассчитайте площадь отапливаемой площади в гараже в квадратных футах.Это рассчитывается путем умножения площади всего помещения в квадратных футах на 0,9. Например, если площадь всей комнаты составляет 100 квадратных футов, 100 x 0,9 = 90 квадратных футов.
  2. Теперь умножьте эту отапливаемую площадь на 12 Вт на квадратный фут потребляемой энергии. Поскольку большинство систем потребляют примерно столько электроэнергии. Например, 90 квадратных футов отапливаемой площади в этом примере умножаются на 12. Или 90 x 12 = 1080 Вт электроэнергии.
  3. Поскольку ваш счет за электроэнергию, скорее всего, рассчитывается и выставляется в киловаттах, вы должны рассчитать эту сумму.Разделите общее количество ватт на 1000, чтобы получить количество киловатт, которое система будет использовать в час. В нашем примере с гаражом 1080 ватт делятся на 1000, или 1080 ÷ 1000 = 1,08 киловатт.
  4. Теперь узнайте, сколько у вас взимается за киловатт в вашем районе. Затем умножьте это число на то, сколько ваша система обогрева пола в гараже, вероятно, будет использовать в час. В среднем в США составляет 13,31 доллара за киловатт-час. Это может быть более или менее там, где вы живете. Итак, в нашем примере с гаражом 1,08 киловатта умножается на 13 долларов.31, или 1,08 x 13,31 = 14,37. Гараж в нашем примере будет стоить 14,37 доллара в час.
Однако важно помнить, что системы обогрева пола в гараже не работают круглосуточно.

Путем включения программируемого термостата в вашу систему. Вы можете установить желаемую температуру, и система будет работать только по мере необходимости для поддержания этой температуры. Кроме того, с системой также можно работать только тогда, когда вы планируете ее использовать. Если вы просто не хотите поддерживать в тепле гараж 24 часа в сутки, 7 дней в неделю, нет смысла поддерживать систему в постоянной работе.

Программируемый термостат можно настроить на работу только тогда, когда будет использоваться пространство. Кроме того, с помощью термостата Wi-Fi вы можете контролировать температуру или систему из любого места.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *